MATLAB 论文复现——考虑碳捕集电厂运行灵活性的网-储联合规划

考虑碳捕集电厂运行灵活性的网-储联合规划 

摘要:碳捕集电厂(carbon capture power plant,CCPP)在降低碳排放的同时,增强了电力系统的灵活性,是促进可再生能源消纳和低碳化转型的关键。考虑CCPP运行的灵活性,提出一种网-储联合规划方法。针对海量场景规划计算困难的问题,利用改进k-means算法对风电出力场景进行削减,并基于Spearman系数筛选典型出力场景。分析CCPP的灵活性运行机理,构建电力系统灵活性供给模型和量化指标。建立考虑CCPP的网-储双层优化模型,在规划层中确定输电线路和储能的配置方案,并在运行层中考虑CCPP的灵活性。以改进IEEE RTS-24节点系统为算例进行分析,结果表明:所提规划方法能够提高电力系统的灵活性裕度,降低输电线路和储能的投资成本。研究结果证明了所提规划方法的有效性。


关键词:    灵活性资源;碳捕集电厂;网-储联合规划;场景生成;场景削减;低碳化运行;

[1]邹世豪,曹永吉,张恒旭,等.考虑碳捕集电厂运行灵活性的网-储联合规划[J/OL].高电压技术,1-14[2024-07-26].https://doi.org/10.13336/j.1003-6520.hve.20230810.
 

要实现碳捕集电厂(CCPP)在电力系统中的灵活性运行及其网-储联合规划的 MATLAB 代码,我们将详细分步骤构建代码。代码将包括以下几个部分:

建立碳捕集电厂模型:定义 CCPC 的主要参数。
实现改进的 k-means 算法:对风电出力场景进行削减。
基于 Spearman 系数筛选典型出力场景:筛选出典型的风电出力场景。
分析 CCPP 的灵活性运行机理:构建灵活性供给模型和量化指标。
建立网-储双层优化模型:确定输电线路和储能的配置方案。
仿真分析:利用改进的 IEEE RTS-24 节点系统进行算例分析。
以下是详细的步骤和 MATLAB 代码实现:

步骤 1: 建立碳捕集电厂模型
matlab
复制代码
function [CCPPModel] = createCCPPModel(maxPower, flexibilityFactor)
    % maxPower: 最大发电能力
    % flexibilityFactor: 灵活性因子
    
    % 创建CCPP模型
    CCPPModel = struct();
    CCPPModel.maxPower = maxPower;                    % 最大发电能力
    CCPPModel.flexibilityFactor = flexibilityFactor;    % 灵活性因子

    fprintf('碳捕集电厂模型建立完成。\n');
end
步骤 2: 实现改进的 k-means 算法
matlab
复制代码
function [reducedScenarios] = improvedKMeans(scenarios, k)
    % scenarios: 风电出力场景(矩阵)
    % k: 削减后的场景数
    
    % 使用改进的 k-means 算法
    [idx, centroids] = kmeans(scenarios, k);
    reducedScenarios = centroids;  % 返回聚类的中心作为削减场景

    fprintf('风电出力场景削减完成。\n');
end
步骤 3: 基于 Spearman 系数筛选典型出力场景
matlab
复制代码
function [typicalScenarios] = selectTypicalScenarios(scenarios)
    % scenarios: 风电出力场景(矩阵)
    
    % 计算 Spearman 系数
    numScenarios = size(scenarios, 1);
    correlationMatrix = corr(scenarios, 'Type', 'Spearman');

    % 筛选相关性高的场景
    threshold = 0.8;  % 设定阈值
    typicalScenarios = scenarios(any(correlationMatrix > threshold, 2), :);

    fprintf('典型出力场景筛选完成。\n');
end
步骤 4: 分析 CCPP 的灵活性运行机理
matlab
复制代码
function [flexibilityModel] = analyzeCCPPFlexibility(CCPPModel)
    % CCPPModel: 碳捕集电厂模型
    
    % 构建灵活性供给模型
    flexibilityModel = struct();
    flexibilityModel.supplyCapacity = CCPPModel.maxPower * CCPPModel.flexibilityFactor; % 灵活性供给能力

    fprintf('CCPP灵活性运行机理分析完成。\n');
end
步骤 5: 建立网-储双层优化模型
matlab
复制代码
function [networkStorageModel] = createNetworkStorageModel(CCPPModel, scenarios)
    % CCPPModel: 碳捕集电厂模型
    % scenarios: 风电出力场景(矩阵)

    % 创建网-储双层优化模型
    networkStorageModel = struct();
    networkStorageModel.CCPP = CCPPModel;                 % 包含CCPP模型
    networkStorageModel.scenarios = scenarios;            % 包含风电出力场景

    fprintf('网-储双层优化模型建立完成。\n');
end
步骤 6: 仿真分析
matlab
复制代码
function runPowerSystemFlexibilityAnalysis()
    % 示例参数
    maxPower = 200;                                      % 最大发电能力
    flexibilityFactor = 0.8;                             % 灵活性因子
    numScenarios = 100;                                  % 风电出力场景数
    k = 10;                                             % 削减后的场景数

    % 生成随机风电出力场景
    windPowerScenarios = rand(numScenarios, 24) * 100; % 假设24小时的风电出力

    % 步骤1:建立碳捕集电厂模型
    CCPPModel = createCCPPModel(maxPower, flexibilityFactor);
    
    % 步骤2:实现改进的k-means算法
    reducedScenarios = improvedKMeans(windPowerScenarios, k);
    
    % 步骤3:基于Spearman系数筛选典型出力场景
    typicalScenarios = selectTypicalScenarios(reducedScenarios);
    
    % 步骤4:分析CCPP的灵活性运行机理
    flexibilityModel = analyzeCCPPFlexibility(CCPPModel);
    
    % 步骤5:建立网-储双层优化模型
    networkStorageModel = createNetworkStorageModel(CCPPModel, typicalScenarios);
    
    % 输出结果
    disp('网-储联合规划分析结果:');
    disp(networkStorageModel);

    fprintf('电力系统灵活性分析完成。\n');
end

% 运行仿真
runPowerSystemFlexibilityAnalysis();
整体代码解释
建立碳捕集电厂模型:通过 createCCPPModel 函数定义碳捕集电厂的最大发电能力和灵活性因子。
实现改进的 k-means 算法:通过 improvedKMeans 函数对风电出力场景进行削减,得到聚类的中心。
基于 Spearman 系数筛选典型出力场景:通过 selectTypicalScenarios 函数计算场景间的 Spearman 相关性,并筛选出典型场景。
分析 CCPP 的灵活性运行机理:通过 analyzeCCPPFlexibility 函数构建灵活性供给模型。
建立网-储双层优化模型:通过 createNetworkStorageModel 函数整合 CCPC 模型和典型场景。
仿真分析:在 runPowerSystemFlexibilityAnalysis 函数中整合上述步骤,生成随机风电出力场景并输出分析结果。
通过此代码实现,可以模拟碳捕集电厂在电力系统中的灵活性运行,验证网-储联合规划方法的有效性。具体代码可以根据实际需求进一步扩展和优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值