考虑碳捕集电厂运行灵活性的网-储联合规划
、
摘要:碳捕集电厂(carbon capture power plant,CCPP)在降低碳排放的同时,增强了电力系统的灵活性,是促进可再生能源消纳和低碳化转型的关键。考虑CCPP运行的灵活性,提出一种网-储联合规划方法。针对海量场景规划计算困难的问题,利用改进k-means算法对风电出力场景进行削减,并基于Spearman系数筛选典型出力场景。分析CCPP的灵活性运行机理,构建电力系统灵活性供给模型和量化指标。建立考虑CCPP的网-储双层优化模型,在规划层中确定输电线路和储能的配置方案,并在运行层中考虑CCPP的灵活性。以改进IEEE RTS-24节点系统为算例进行分析,结果表明:所提规划方法能够提高电力系统的灵活性裕度,降低输电线路和储能的投资成本。研究结果证明了所提规划方法的有效性。
关键词: 灵活性资源;碳捕集电厂;网-储联合规划;场景生成;场景削减;低碳化运行;
[1]邹世豪,曹永吉,张恒旭,等.考虑碳捕集电厂运行灵活性的网-储联合规划[J/OL].高电压技术,1-14[2024-07-26].https://doi.org/10.13336/j.1003-6520.hve.20230810.
要实现碳捕集电厂(CCPP)在电力系统中的灵活性运行及其网-储联合规划的 MATLAB 代码,我们将详细分步骤构建代码。代码将包括以下几个部分:
建立碳捕集电厂模型:定义 CCPC 的主要参数。
实现改进的 k-means 算法:对风电出力场景进行削减。
基于 Spearman 系数筛选典型出力场景:筛选出典型的风电出力场景。
分析 CCPP 的灵活性运行机理:构建灵活性供给模型和量化指标。
建立网-储双层优化模型:确定输电线路和储能的配置方案。
仿真分析:利用改进的 IEEE RTS-24 节点系统进行算例分析。
以下是详细的步骤和 MATLAB 代码实现:
步骤 1: 建立碳捕集电厂模型
matlab
复制代码
function [CCPPModel] = createCCPPModel(maxPower, flexibilityFactor)
% maxPower: 最大发电能力
% flexibilityFactor: 灵活性因子
% 创建CCPP模型
CCPPModel = struct();
CCPPModel.maxPower = maxPower; % 最大发电能力
CCPPModel.flexibilityFactor = flexibilityFactor; % 灵活性因子
fprintf('碳捕集电厂模型建立完成。\n');
end
步骤 2: 实现改进的 k-means 算法
matlab
复制代码
function [reducedScenarios] = improvedKMeans(scenarios, k)
% scenarios: 风电出力场景(矩阵)
% k: 削减后的场景数
% 使用改进的 k-means 算法
[idx, centroids] = kmeans(scenarios, k);
reducedScenarios = centroids; % 返回聚类的中心作为削减场景
fprintf('风电出力场景削减完成。\n');
end
步骤 3: 基于 Spearman 系数筛选典型出力场景
matlab
复制代码
function [typicalScenarios] = selectTypicalScenarios(scenarios)
% scenarios: 风电出力场景(矩阵)
% 计算 Spearman 系数
numScenarios = size(scenarios, 1);
correlationMatrix = corr(scenarios, 'Type', 'Spearman');
% 筛选相关性高的场景
threshold = 0.8; % 设定阈值
typicalScenarios = scenarios(any(correlationMatrix > threshold, 2), :);
fprintf('典型出力场景筛选完成。\n');
end
步骤 4: 分析 CCPP 的灵活性运行机理
matlab
复制代码
function [flexibilityModel] = analyzeCCPPFlexibility(CCPPModel)
% CCPPModel: 碳捕集电厂模型
% 构建灵活性供给模型
flexibilityModel = struct();
flexibilityModel.supplyCapacity = CCPPModel.maxPower * CCPPModel.flexibilityFactor; % 灵活性供给能力
fprintf('CCPP灵活性运行机理分析完成。\n');
end
步骤 5: 建立网-储双层优化模型
matlab
复制代码
function [networkStorageModel] = createNetworkStorageModel(CCPPModel, scenarios)
% CCPPModel: 碳捕集电厂模型
% scenarios: 风电出力场景(矩阵)
% 创建网-储双层优化模型
networkStorageModel = struct();
networkStorageModel.CCPP = CCPPModel; % 包含CCPP模型
networkStorageModel.scenarios = scenarios; % 包含风电出力场景
fprintf('网-储双层优化模型建立完成。\n');
end
步骤 6: 仿真分析
matlab
复制代码
function runPowerSystemFlexibilityAnalysis()
% 示例参数
maxPower = 200; % 最大发电能力
flexibilityFactor = 0.8; % 灵活性因子
numScenarios = 100; % 风电出力场景数
k = 10; % 削减后的场景数
% 生成随机风电出力场景
windPowerScenarios = rand(numScenarios, 24) * 100; % 假设24小时的风电出力
% 步骤1:建立碳捕集电厂模型
CCPPModel = createCCPPModel(maxPower, flexibilityFactor);
% 步骤2:实现改进的k-means算法
reducedScenarios = improvedKMeans(windPowerScenarios, k);
% 步骤3:基于Spearman系数筛选典型出力场景
typicalScenarios = selectTypicalScenarios(reducedScenarios);
% 步骤4:分析CCPP的灵活性运行机理
flexibilityModel = analyzeCCPPFlexibility(CCPPModel);
% 步骤5:建立网-储双层优化模型
networkStorageModel = createNetworkStorageModel(CCPPModel, typicalScenarios);
% 输出结果
disp('网-储联合规划分析结果:');
disp(networkStorageModel);
fprintf('电力系统灵活性分析完成。\n');
end
% 运行仿真
runPowerSystemFlexibilityAnalysis();
整体代码解释
建立碳捕集电厂模型:通过 createCCPPModel 函数定义碳捕集电厂的最大发电能力和灵活性因子。
实现改进的 k-means 算法:通过 improvedKMeans 函数对风电出力场景进行削减,得到聚类的中心。
基于 Spearman 系数筛选典型出力场景:通过 selectTypicalScenarios 函数计算场景间的 Spearman 相关性,并筛选出典型场景。
分析 CCPP 的灵活性运行机理:通过 analyzeCCPPFlexibility 函数构建灵活性供给模型。
建立网-储双层优化模型:通过 createNetworkStorageModel 函数整合 CCPC 模型和典型场景。
仿真分析:在 runPowerSystemFlexibilityAnalysis 函数中整合上述步骤,生成随机风电出力场景并输出分析结果。
通过此代码实现,可以模拟碳捕集电厂在电力系统中的灵活性运行,验证网-储联合规划方法的有效性。具体代码可以根据实际需求进一步扩展和优化。