【动态规划-最长递增子序列(LIS)】力扣673.最长递增子序列的个数

65 篇文章 0 订阅
4 篇文章 0 订阅

给定一个未排序的整数数组 nums , 返回最长递增子序列的个数 。

注意 这个数列必须是 严格 递增的。

示例 1:
输入: [1,3,5,4,7]
输出: 2
解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。

示例 2:
输入: [2,2,2,2,2]
输出: 5
解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。
在这里插入图片描述

动态规划

class Solution {
public:
    int findNumberOfLIS(vector<int>& nums) {
        int n = nums.size();
        int maxLen = 0, ans = 0;
        vector<int> dp(n, 1), count(n, 1);
        for(int i = 0; i < n; i++){
            for(int j = 0; j < i; j++){
                if(nums[i] > nums[j]){
                    if(dp[j] + 1 > dp[i]){  //发现更长的
                        dp[i] = dp[j] + 1;
                        count[i] = count[j];
                    }
                    else if(dp[j] + 1 == dp[i]){    //相同长度的不同子序列
                        count[i] += count[j];
                    }
                }  
            }
            if(dp[i] > maxLen){
                maxLen = dp[i];
                ans = count[i];
            }
            else if(dp[i] == maxLen){
                ans += count[i];
            }
        }


        return ans;
    }
};

在这里插入图片描述

我们在求最长递增子序列的模板题(力扣300)的时候维护了一个数组dp[i]来记录结尾为nums[i]的最长公共递增子序列长度。在这道题目中,我们新增维护一个数组count[i]来记录结尾为i的最长公共子序列的长度。

那么要如何维护count呢?我们在循环中,一旦发现if(dp[j] + 1 > dp[i]),就说明发现了更长的公共子序列,那么这个时候,我们就重置count[i]为count[j],之所以重置为count[j]是因为count[j]代表着之前以nums[j]结尾的最长公共递增子序列的个数,那么有count[j]个最长公共递增子序列再加上当前的nums[i],就有count[j]种以nums[i]结尾的最长公共递增子序列。

然后再继续遍历以nums[i]结尾的最长公共递增子序列,如果发现了有相同长度的公共递增子序列,就加上这个以nums[j]结尾的最长公共子序列的数量count[j]。

在每次第一层循环结束时,以nums[i]结尾的最长公共递增子序列数量已经确定。由于我们要找的是所有循环过后的全局最长公共递增子序列数量,所以我们定义一个maxLen来储存最长的公共递增子序列长度,也定义一个整型ans来记录最长递增子序列的数量。

这道题目可以通过类似力扣300的方式使用前缀和以及二分查找的方式进行优化时间复杂度为nlogn。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值