给定一个未排序的整数数组 nums , 返回最长递增子序列的个数 。
注意 这个数列必须是 严格 递增的。
示例 1:
输入: [1,3,5,4,7]
输出: 2
解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。
示例 2:
输入: [2,2,2,2,2]
输出: 5
解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。
动态规划
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int n = nums.size();
int maxLen = 0, ans = 0;
vector<int> dp(n, 1), count(n, 1);
for(int i = 0; i < n; i++){
for(int j = 0; j < i; j++){
if(nums[i] > nums[j]){
if(dp[j] + 1 > dp[i]){ //发现更长的
dp[i] = dp[j] + 1;
count[i] = count[j];
}
else if(dp[j] + 1 == dp[i]){ //相同长度的不同子序列
count[i] += count[j];
}
}
}
if(dp[i] > maxLen){
maxLen = dp[i];
ans = count[i];
}
else if(dp[i] == maxLen){
ans += count[i];
}
}
return ans;
}
};
我们在求最长递增子序列的模板题(力扣300)的时候维护了一个数组dp[i]来记录结尾为nums[i]的最长公共递增子序列长度。在这道题目中,我们新增维护一个数组count[i]来记录结尾为i的最长公共子序列的长度。
那么要如何维护count呢?我们在循环中,一旦发现if(dp[j] + 1 > dp[i])
,就说明发现了更长的公共子序列,那么这个时候,我们就重置count[i]为count[j],之所以重置为count[j]是因为count[j]代表着之前以nums[j]结尾的最长公共递增子序列的个数,那么有count[j]个最长公共递增子序列再加上当前的nums[i],就有count[j]种以nums[i]结尾的最长公共递增子序列。
然后再继续遍历以nums[i]结尾的最长公共递增子序列,如果发现了有相同长度的公共递增子序列,就加上这个以nums[j]结尾的最长公共子序列的数量count[j]。
在每次第一层循环结束时,以nums[i]结尾的最长公共递增子序列数量已经确定。由于我们要找的是所有循环过后的全局最长公共递增子序列数量,所以我们定义一个maxLen来储存最长的公共递增子序列长度,也定义一个整型ans来记录最长递增子序列的数量。
这道题目可以通过类似力扣300的方式使用前缀和以及二分查找的方式进行优化时间复杂度为nlogn。