我曾因为估算错误损失100万:这3个教训,每个提示工程架构师都要记牢
关键词:提示工程、估算错误、上下文窗口、token成本、迭代优化、AI项目成本控制
摘要:本文通过一个真实的「100万损失」案例,拆解提示工程架构师最容易踩的3个估算误区——把上下文窗口当「无限背包」、忽略token的「隐性成本」、把迭代当「免费试错」。用「书包装书」「买糖果」「试衣服」等生活比喻,结合Python代码、数学模型和实战技巧,帮你搞懂「如何准确估算提示成本」,避免重蹈覆辙。
背景介绍
目的和范围
提示工程(Prompt Engineering)是AI应用的「翻译官」——把人类需求转换成AI能理解的指令。但很多架构师只关注「提示效果」,却忽略了「成本估算」:一个看似微小的估算错误,可能让项目成本翻倍,甚至导致项目失败。本文聚焦「提示工程中的成本估算误区」,帮你掌握3个核心教训,让AI项目既「好用」又「便宜」。
预期读者
- 提示工程架构师、AI算法工程师
- 负责AI项目成本核算的产品经理、项目经理
- 想了解AI成本控制的技术管理者
文档结构概述
- 用「100万损失」的真实故事引出问题
- 拆解3个核心教训(上下文窗口、token成本、迭代优化)
- 用生活比喻+代码+数学模型讲清原理
- 实战案例: