AI应用架构师领域的上下文工程:提升AI智能体性能的新方向
引言:AI智能体的性能瓶颈与上下文工程的崛起
在AI技术迅猛发展的今天,从ChatGPT到AutoGPT,从客服机器人到自动驾驶系统,AI智能体(AI Agent)已成为连接人与机器的核心交互载体。然而,许多AI应用的性能瓶颈并非来自模型本身的能力,而是上下文处理能力的不足。
想象这样一个场景:
你问AI助手:“我想学习Python,应该从哪里开始?”
AI回答:“推荐《Python编程:从入门到实践》,适合初学者。”
接着你问:“有没有配套的在线课程?”
如果AI回答:“《Python编程:从入门到实践》是一本好书。”——这显然是失败的,因为它没有利用上一轮的对话上下文(“在线课程”)。
再比如,当你在电商平台咨询:“这件衣服的尺码准吗?”
AI回答:“我们的衣服尺码是标准的。”
但如果你之前问过:“我170cm,60kg,穿M号合适吗?”——此时AI应该结合用户体型数据(上下文)和当前问题(尺码准确性),给出更具体的建议:“根据你的体型,M号应该合适,我们的尺码是标准的。”
这些案例暴露了一个关键问题:AI智能体的性能不仅取决于模型的推理能力,更取决于它对“上下文”的理解和利用能力。而上下文工程(Context Engineering)正是解决这一问题的核心技术,也是AI应用架构师必须掌握的关键技能。

订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



