题意:
给你一个初始为空的序列,让你支持以下操作
1.插入+x,-x到位置p,其中x是序列中没出现过的最小正整数,其中插入后+x在位置p,-x的位置是左边负数的个数和+x左边正数的个数一样且最靠右的位置
2.删除+x,-x 保证+x,-x在序列中存在
3.询问+x,-x之间的数之和
题解:
这题是做的几个splay题目里面比较烦的一个,所以写个博客记录下
首先插入操作是最烦的,求序列中没出现过的最小正整数用一个优先队列维护下就行,对于+x,我们先Get_kth(root,p)找到第p个数是那个数,然后把这个数splay到根然后把+x插到根的前面去,对于-x,由于我们要知道+x前面有几个正数,这里我是用了cnt[x][0]和cnt[x][1]来维护正数和负数在x的子树中的个数,这样我们就可以像计算siz一样计算正数与负数的个数,设+x前面有num个正数,我们就把第num+1个负数splay到根然后把-x插到根前面去,就满足了最靠右的要求,这里插入查找时注意没有这么多数的情况需要特判下
然后是删除操作,这个我们只要在插入的时候用一个数组维护下数x的下标是哪个,把下标对应的节点转到根删了就行
然后输求和操作,这和splay经典的区间操作一样把l-1splay到根,把r+1splay到根的右儿子,这样根的右儿子的左儿子就是我们需要操作的区间[l,r],在一般题目中我们需要新建两个节点来防止越界,这题就不需要了
#include<set>
#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<bitset>
#include<vector>
#include<cassert>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define PB push_back
#define MP make_pair
#define ll long long
#define MS(a,b) memset(a,b,sizeof(a))
#define LL (rt<<1)
#define RR (rt<<1|1)
#define lson l,mid,LL
#define rson mid+1,r,RR
#define pii pair<int,int>
#define pll pair<ll,ll>
#define lb(x) (x&(-x))
void In(){freopen("in.in","r",stdin);}
void Out(){freopen("out.out","w",stdout);}
const int N=2e6+10;
const int M=3e5+10;
const int zero=1e6+5;
const int Mbit=1e6+10;
const int inf=0x3f3f3f3f;
const ll mod=1e9+7;
int root,tot;
int ch[N][2],cnt[N][2],siz[N],pre[N],pos[N],key[N];
ll sum[N];
void init()
{
root=tot=0;
ch[root][0]=ch[root][1]=siz[root]=pre[root]=cnt[root][0]=cnt[root][1]=0;
sum[root]=0ll;
}
void newnode(int &r,int k,int fa)
{
r=++tot;
pos[k+zero]=r;
pre[r]=fa;
siz[r]=1;
ch[r][0]=ch[r][1]=cnt[r][0]=cnt[r][1]=0;
sum[r]=k;
if(k>0)cnt[r][0]=1;
else cnt[r][1]=1;
key[r]=k;
}
void up(int r)
{
siz[r]=siz[ch[r][0]]+siz[ch[r][1]]+1;
sum[r]=0ll+key[r]+sum[ch[r][0]]+sum[ch[r][1]];
cnt[r][0]=cnt[ch[r][0]][0]+cnt[ch[r][1]][0]+(key[r]>0);
cnt[r][1]=cnt[ch[r][0]][1]+cnt[ch[r][1]][1]+(key[r]<0);
}
int Insert(int &r,int i,int fa)
{
if(r==0){
newnode(r,i,fa);
return 0;
}
int t;
t=Insert(ch[r][1],i,r);
up(r);
return cnt[ch[r][0]][0]+t+(key[r]>0);
}
void Rotate(int x,int kind){
int y=pre[x];
ch[y][!kind]=ch[x][kind];
pre[ch[x][kind]]=y;
if(pre[y])
ch[pre[y]][ch[pre[y]][1]==y]=x;
pre[x]=pre[y];
ch[x][kind]=y;
pre[y]=x;
up(y);
}
void splay(int r,int goal){
while(pre[r]!=goal){
if(pre[pre[r]]==goal)
Rotate(r,ch[pre[r]][0]==r);
else{
int y=pre[r];
int kind=(ch[pre[y]][0]==y);
if(ch[y][kind]==r){
Rotate(r,!kind);
Rotate(r,kind);
}
else{
Rotate(y,kind);
Rotate(r,kind);
}
}
}
up(r);
if(goal==0) root=r;
}
int Min(int r){
while(ch[r][0])r=ch[r][0];
return r;
}
void Delete(){
if(ch[root][0]==0||ch[root][1]==0){
root=ch[root][0]+ch[root][1];
pre[root]=0;
return;
}
int k=Min(ch[root][1]);
splay(k,root);
ch[ch[root][1]][0]=ch[root][0];
root=ch[root][1];
pre[ch[root][0]]=root;
pre[root]=0;
up(root);
}
int Get_kth(int r,int k){
int t=siz[ch[r][0]];
if(t>=k)return Get_kth(ch[r][0],k);
else if(t+1==k) return r;
else return Get_kth(ch[r][1],k-t-1);
}
int Get_kthneg(int r,int k)
{
int t=cnt[ch[r][0]][1];
if(t>=k)return Get_kthneg(ch[r][0],k);
else if((t+1==k)&&(key[r]<0))return r;
else return Get_kthneg(ch[r][1],k-t-(key[r]<0));
}
char op[10];
int main()
{
//In();
//Out();
int T,kase=0,n;
while(~scanf("%d",&n)){
printf("Case #%d:\n",++kase);
init();
priority_queue<int,vector<int>,greater<int>>pq;
for(int i=1;i<=n;i++)
pq.push(i);//维护最小可用
while(n--){
scanf("%s",op);
//assert(siz[0]==0);
if(op[0]=='i'){
int p;
scanf("%d",&p);p++;
int i=pq.top();pq.pop();
int num;
if(siz[root]<p)num=Insert(root,i,0);
else{
int k=Get_kth(root,p);//查找第p个是哪个数
splay(k,0);//把第p个转到根
num=Insert(ch[root][0],i,root);up(root);
}
//插入i
//插入-i
if(cnt[root][1]<num+1)Insert(root,-i,0);//不够插在最后
else{
int k=Get_kthneg(root,num+1);//找到第num+1个负数
splay(k,0);
Insert(ch[root][0],-i,root);up(root);
}
}
else if(op[0]=='r'){
int k;
scanf("%d",&k);
splay(pos[k+zero],0);
Delete();
splay(pos[-k+zero],0);
Delete();
pq.push(k);
}
else{
int k;
scanf("%d",&k);
splay(pos[k+zero],0);
splay(pos[-k+zero],root);
printf("%lld\n",sum[ch[ch[root][1]][0]]);
}
}
}
return 0;
}