# 引言
在当今的问答应用中,赋予应用能够进行回合制对话的能力变得至关重要。这意味着应用程序需要某种形式的“记忆”来记录过往的问题和答案,并具有将这些上下文融入当前问题推理的逻辑。在本文中,我们将探讨如何在您的应用中加入这种逻辑,以提升用户体验。
# 主要内容
## 1. 理解基础概念
在开始之前,确保您熟悉以下概念:
- **聊天历史**:记录用户与系统之间的对话。
- **聊天模型**:例如GPT模型,用于处理自然语言。
- **嵌入**:使用算法将文本转化为数值向量以供处理。
- **向量存储**:用于存储和检索嵌入的数据库。
- **检索增强生成(RAG)**:结合检索步骤来提升生成任务准确性。
## 2. 构建检索链
### 链
链通常每次都会执行检索步骤。我们先简单回顾如何利用链将用户输入转化为检索请求,并结合上下文信息回答用户问题。
### 代理
代理则能灵活地决定是否以及如何执行检索步骤。尽管其行为不可预测,但在复杂环境中操作效率较高。
## 3. 使用OpenAI等API进行配置
在本文中,我们将使用OpenAI的嵌入和Chroma向量存储。由于网络环境的限制,可能需要考虑使用API代理服务以确保访问的稳定性。
### 安装依赖
```bash
%%capture --no-stderr
%pip install --upgrade --quiet langchain langchain-community langchainhub langchain-chroma bs4
4. 构建会话RAG链
通过结合检索工具与代理,我们能够构建一个更具交互性的问答系统。关键在于设置一个能够自动更新和使用历史记录的机制。
代码示例
import os
from langchain.chains import create_retrieval_chain, create_history_aware_retriever
from langchain_core.prompts import ChatPromptTemplate
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
# 设置API密钥
os.environ["OPENAI_API_KEY"] = "你的API密钥"
# 构建检索器
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
retriever = vectorstore.as_retriever()
# 构建历史记录感知检索器
contextualize_q_prompt = ChatPromptTemplate.from_messages([
("system", "根据聊天记录重构问题以便理解"),
("human", "{input}"),
])
history_aware_retriever = create_history_aware_retriever(llm, retriever, contextualize_q_prompt)
# 构建会话式RAG链
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
# 调用示例
response = rag_chain.invoke({"input": "What is Task Decomposition?", "chat_history": []})
print(response["answer"])
常见问题和解决方案
问题1:网络访问不稳定
解决方案:使用API代理服务以提高访问稳定性。
问题2:历史上下文无法正确插入
解决方案:检查历史记录结构,并确保正确传递给检索和生成模块。
总结与进一步学习资源
本文介绍了一种有效的会话式RAG实现机制,帮助您构建能自动处理历史记录的智能问答应用。为了深入探索不同的检索器类型和策略,建议访问retrievers教程以及LangChain的讨论模块。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---