[算法]放苹果问题

本文首先介绍了斐波那契数列递归求解时的时间复杂度,通过分析得出其时间复杂度为O(2^n)。接着讨论了放苹果问题,阐述了题目的描述,并提供了递归解法和动态规划解法来解决这个问题。
摘要由CSDN通过智能技术生成

1. 在说放苹果问题之前,先说下斐波那契数列递归求解时的时间复杂度。

由公式f(n) = f(n - 1) + f(n - 2)很容易画出其递归树:

每个节点都会调用一次f(n),满二叉树节点数m = 2^h - 1,h是树高度。

则O(n) = 2^N.


2.放苹果问题

题目描述

把m个同样的苹果放在n个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。

递归解法:

    public static int fun(int m, int n) {
        if (m < 0) return 0;
        if (n == 1 || m == 0) return 1;//只有一个盘子时只有1中放法;没有苹果时也只有一种放法——全空
        return fun(m, n - 1) + fun(m - n, n);//至少有1个空盘子;全都是满盘子
    }

动态规划解法:

    public static int fun2(int m, int n) {
        int[][] dp = n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值