LeetCode 33, Search in Rotated Sorted Array
Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7
might become 4 5 6 7 0 1 2
).
You are given a target value to search. If found in the array return its index, otherwise return -1. You may assume no duplicate exists in the array.
这个题目,数组是部分排序的。如果是全排序,binary Search 可以在O(lgN) 下查找的 target, 那这里其实还是 binary search,和标准的二分法只是判定条件的区别。一般二分法通过比较mid 和 target就能不断调整,直至找到target, 这里由于整个数组被折叠,从而由两个递增有序数组组成,因此判定条件更复杂。
一种算法就是通过更改一般二分法的判定条件,直接找到target:
public class Solution {
public int search(int[] nums, int target) {
int len=nums.length;
int h=0, t=len-1,mid=-1;
while(mid!=(h+t)/2){
mid=(h+t)/2;
if(nums[mid]>=nums[h]){
if(target>=nums[h]&&target<=nums[mid]) t=mid;
else h=mid;
}else{
if(target<=nums[t] && target>nums[mid]) h=mid;
else t=mid;
}
}
if(nums[t]==target) return t;
return -1;
}
}
这里是通过循环实现了这个算法,写成递归当然也是可以的。
其实一开始,我先想到的算法比较复杂,并没有这个好,时间复杂度为2*lgN。思路是,先找到有序数组反转的折点,然后对两部分分别利用二分查找。寻找折叠点,其实用的还是binary search 的思想, 对两个有序子序列进行binary search可以直接调用Arrays.binarySearch() 来完成。代码如下:
import java.util.*;
public class Solution {
public int search(int[] nums, int target) {
int len=nums.length;
if(len==0) return -1;
int h=0,t=len-1,mid=-1;
while(mid!=(h+t)/2){
mid=(h+t)/2;
if(nums[mid]<nums[h]) t=mid;
else h=mid;
}
int index=Arrays.binarySearch(nums,0,t,target);
if(index>=0) return index;
index=Arrays.binarySearch(nums,t,len,target);
if(index>=0) return index;
return -1;
}
}
这个Solution 比上面的慢一点,而且代码量也没上面少,因此并不是很好。