LeetCode145-二叉树的后序遍历

28 篇文章 0 订阅
28 篇文章 0 订阅

LeetCode145-二叉树的后序遍历

最近全国疫情严重,待在家里没事干,马上又要准备春招了,最近刷刷题,记录一下!再说一句,武汉加油,大家出门记得戴口罩!

1、题目

给定一个二叉树,返回它的后序遍历。
示例:

输入: [1,null,2,3]  
   1
    \
     2
    /
   3 
输出: [3,2,1]

进阶: 递归算法很简单,你可以通过迭代算法完成吗?

2、思路

首先,定义树的存储结构 TreeNode。

/* Definition for a binary tree node. */
public class TreeNode {
  int val;
  TreeNode left;
  TreeNode right;
  TreeNode(int x) {
    val = x;
  }
}

基于递归求解:

void fun(tree){
fun(tree->left);
fun(tree->right);
tree->val;
}

基于栈的遍历:
过程:将整棵树的最左边的一条链压入栈中,每次取出栈顶元素,如果它有右子树,则将右子树压入栈中。

3、代码

递归实现:

class Solution {
public:
    vector<int> res;
    vector<int> postorderTraversal(TreeNode* root) {
        if(root==NULL) return res;
        if(root->left) postorderTraversal(root->left);
        if(root->right) postorderTraversal(root->right);
        res.push_back(root->val);
        return res;  
    }
};

基于栈的遍历:
复杂度分析
时间复杂度:O(n)。
空间复杂度:O(n)。
c++

class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> res;
        stack<TreeNode* > stk;
        auto p=root;
        while(p||stk.size())
        {
            while(p)
            {
                stk.push(p);
                p=p->left;
            }
            p=stk.top();
            stk.pop();
            res.push_back(p->val);
            p=p->right;
        }
        return res;
    }
};

Java

class Solution {
  public List<Integer> postorderTraversal(TreeNode root) {
    LinkedList<TreeNode> stack = new LinkedList<>();
    LinkedList<Integer> output = new LinkedList<>();
    if (root == null) {
      return output;
    }

    stack.add(root);
    while (!stack.isEmpty()) {
      TreeNode node = stack.pollLast();
      output.addFirst(node.val);
      if (node.left != null) {
        stack.add(node.left);
      }
      if (node.right != null) {
        stack.add(node.right);
      }
    }
    return output;
  }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值