在之前的分词学习后,开始处理提取的词语进行词频统计,因为依据词频是进行关键词提取的最简单方法:
1、英文词频统计和词云制作
词云,又称文字云、标签云,是对文本数据中出现频率较高的“关键词”在视觉上的突出呈现,形成关键词的渲染形成类似云一样的彩色图片,从而一眼就可以领略文本数据的主要表达意思。
from nltk import word_tokenize #分词处理
from nltk.corpus import stopwords #停用词
from nltk import FreqDist #统计词频
from wordcloud import WordCloud #词云
from imageio import imread #导入图片进行处理
import matplotlib.pyplot as plt # 利用Python的Matplotlib包进行绘图
paragraph = 'Water has the property of dissolving sugar and sugar has the property being dissolved by water.'.lower()
cutwords1 = word_tokenize(paragraph)
print('【原句子为:】'+ '\n'+ paragraph)
print('\n【NLTK分词结果:】')
print(cutwords1)
interpunctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%'] #定义符号列表
cutwords2 = [word for word in cutwords1 if word not in interpunctuations] #去除标点符号
print('\n【NLTK分词后去除符号结果:】')
print(cutwords2)
stops = set(stopwords.words("english"))
words_lists = [word for word in cutwords2 if word not in stops] #判断分词在不在停用词列表内
print('\n【NLTK分词后去除停用词结果:】')
print(words_lists)
freq = FreqDist(words_lists)
print(&