2020算法课最后一次思路回顾

博客介绍了多种经典算法问题的思路。包括快速排序、归并排序的划分与递归方法,第k小元素的分组与递归查找,最近点对的分治求解,以及矩阵连乘、钢条切割等问题的动态规划解法,还有活动选择、最短路径等问题的贪心策略。

快速排序

整体思路:

  1. 划分,找基准点x = nums[(l + r) >> 1]这个最好理解
  2. 用双指针两端向中间遍历,在右边找到一个比x小的数,在右边找到一个比x大的数,再交换。重复直到i <= j。
    这种方法与教材不同的是把基准点也放进去继续递归了
  3. 分别递归区间(l, j)和(j + 1, r)

归并排序

  1. 边界条件l < r,二分mid = l + r >> 1,分别递归区间(l, mid)和(mid + 1, r)
  2. 递归到最底层,自底向上对当前划分的两个数组进行排序合并

第k小元素

如果待排序数组的规模较小则直接采用堆排序,若数组规模较大则采用以下方法

  1. 将n个元素分为n / 5组取上界,并且将每组的5个元素排序
  2. 求出n / 5组每一组的中位数得到数组A
  3. 求数组A的中位数得到mid为划分基准,将数组划为3种情况:A1 = 小于mid;A2 = 等于mid;A3 = 大于mid
    if len(A1) >= k:第k小元素在A1中,这时递归查找即可
    elif:len(A1) + len(A2) >= k:mid即为第k小元素
    else:在A3中递归寻找第k - len(A1) + len(A2)小的元素

最近点对

  1. 计算得到所有点x坐标的中位数m,以x = m将点划分为左右两部分l和r
  2. 先递归的求得左右两部分的最小距离d1和d2,也就是先递归到最底层
  3. d = min(d1, d2),得到区间(m - d, m + d),在该区间寻找是否存在一个点p1在左区间一个点p2在右区间使得他们之间的距离d3小于d。如果存在则d3为最终结果,否则d为最终结果。
  4. 根据鸽笼原理可证明在区间(m - d, m + d)内每个点最多只需要比较6个点就能得到距离最近的点

    右边的点p只需要和左边d * 2d的矩形中的点比较即可得到与p最近的那个点
    又因为左区间所有点的的距离最小为d,根据鸽舍原理每个矩形最多只能有一个点在内,也就是说p最多只需要和6个点比较就能找到左边与其距离最小的那个点。

寻找凸包

  1. 寻找到最下且最左的点P0,将这个这个点与其他n - 1个点连线,并将这n - 1个点按照其与P0的角度排序
  2. 将P0,P1,P2压入一个栈中,从P2开始判断接下来的点Pi,如果Pi不能与栈中的点构成凸包,则弹出栈中元素,直至能构成凸包再把Pi加入栈中

矩阵连乘

矩阵连乘问题具有最优子结构和子问题重叠的性质,所以可以用动态规划来解决
f[i][j]f[i][j]f[i][j]为矩阵i连乘到矩阵j的代价,w[i]w[i]w[i]保存第一个矩阵的行列以及剩余n - 1个矩阵的行。
由于如果两个矩阵分别为A * B和C * D,它们相乘的代价为A * B * D
所以用k来分割矩阵i到矩阵j,则有
f[i][j]=min(f[i][k]+f[k+1][j]+w[i−1]∗w[k]∗w[j])f[i][j] = min(f[i][k] + f[k + 1][j] + w[i - 1] * w[k] * w[j])f[i][j]=min(f[i][k]+f[k+1][j]+w[i1]w[k]w[j])
k的取值为i ~ j - 1
枚举的方法为:

  1. 先遍历区间长度len
  2. 遍历区间的左节点i,则右节点为i + len - 1
  3. 遍历分割点k
    问题的初始值为f[i][i]=0f[i][i] = 0f[i][i]=0i取值为1~n,因为单一矩阵不需要相乘,代价为0
    问题的返回值为f[1][n]f[1][n]f[1][n],即n个矩阵相乘的最小代价

钢条切割

f[i]=max(f[i−j]+v[j])f[i] = max(f[i - j] + v[j])f[i]=max(f[ij]+v[j]),j为价格表中的钢条长度
初始值为:f[0] = 0
实现方法为先令temp=float(′−inf′)temp = float('-inf')temp=float(inf),再枚举j,每次取较大的值
最后令f[i]=tempf[i] = tempf[i]=temp

最长公共子序列

f[i][j]=0;i=0,j=0f[i][j]=f[i−1][j−1]+1;i,j>0且xi=yjf[i][j]=max(f[i][j−1],f[i−1][j]);i,j>0且xi!=yj f[i][j] = 0; i = 0, j = 0 f[i][j] = f[i - 1][j - 1] + 1; i, j > 0且xi = yj f[i][j] = max(f[i][j - 1], f[i - 1][j]); i, j > 0且xi != yj f[i][j]=0;i=0,j=0f[i][j]=f[i1][j1]+1;i,j>0xi=yjf[i][j]=max(f[i][j1],f[i1][j]);i,j>0xi!=yj

最优二叉搜索树

f[i][j]=f[i][k−1]+f[k+1][j]+w[i][j]w[i][j]=w[i][j−1]+p[j]+q[j]foriinrange(1,n+1):f[i][i−1]=q[i−1]w[i][i−1]=q[i−1] f[i][j] = f[i][k - 1] + f[k + 1][j] + w[i][j] w[i][j] = w[i][j - 1] + p[j] + q[j] for i in range(1, n + 1): f[i][i - 1] = q[i - 1] w[i][i - 1] = q[i - 1] f[i][j]=f[i][k1]+f[k+1][j]+w[i][j]w[i][j]=w[i][j1]+p[j]+q[j]foriinrange(1,n+1):f[i][i1]=q[i1]w[i][i1]=q[i1]

流水作业调度问题

  1. 先把所有作业的ai和bi放在一起,从这之中选个最小的
  2. 如果是bi的话这个作业i就放最后,如果是ai的话这个作业就放最前,把这个已经安排好的作业从作业集中删除。3. 重复上述步骤即可。

活动选择问题

为了使活动安排尽可能的多,每次选择结束时间最早的活动
满足最优子结构和贪心选择性

最短路径问题

  1. 令S = {v0},T = {其他顶点},dist[i]为v0带vi的距离
  2. 从T选择一个距离v0最小的点加入S中,修改dist使得每一个vi到v0的距离都是最短路径
  3. 重复2,使得点全部加入S为止
<think>好的,我现在要处理用户关于单调队列的学习资料请求。用户需要详细的资料,包括例题、思维导图、练习思路,适用于信奥学生。首先,我需要回顾单调队列的基本概念和应用场景,确保自己理解正确。 首先,单调队列是一种数据结构,常用于维护滑动窗口中的极值。比如在滑动窗口最大值问题中,单调队列可以在O(n)的时间复杂度内解决,这比暴力法的O(nk)高效很多。用户可能需要了解其基本操作,比如如何保持队列的单调性,以及入队和出队的规则。 接下来是例题部。常见的例题包括滑动窗口最大值、求区间最小值和最大子序列和等。需要选择几个典型的题目,并给出解题思路和代码示例。例如,滑动窗口最大值可以用单调队列维护当前窗口内的最大值,每次窗口滑动时更新队列。 然后是思维导图。这部需要组织单调队列的核心知识点,比如定义、特性、操作步骤、应用场景和常见题型。思维导图应该层次明,便于学生记忆和理解。 练习思路方面,应该阶段设计题目。初级阶段可以包括基础的滑动窗口问题,中级阶段引入二维扩展或结合其他算法,高级阶段则涉及复杂问题如动态规划优化。这样学生可以逐步提升。 同时,用户提到参考了站内的两个引用,虽然内容似乎与单调队列无关,但可能需要适当关联或忽略。需要确保回答中的引用标识正确,例如引用[^1]和[^2],但实际内容中可能没有直接相关的,所以可能需要检查是否有误。 最后,生成相关问题,帮助用户进一步学习。问题应涵盖原理、优化、应用和对比等方面,比如单调队列与优先队列的区别,或者如何优化动态规划中的时间复杂度。 现在需要将这些内容整合成结构化的回答,确保符合用户的要求:使用中文,LaTeX格式正确,点清晰,并包含相关问题。同时,注意引用标识的正确添加,虽然参考的引用可能与主题关联不大,但按照用户示例,可能在回答末尾添加引用。</think>### 单调队列学习指南 #### 一、基础概念 **单调队列**是一种特殊的队列,其内部元素始终保持单调递增或递减的特性,常用于维护**滑动窗口中的极值**。例如,在滑动窗口最大值问题中,时间复杂度可优化至$O(n)$,远优于暴力法的$O(nk)$。 --- #### 二、核心特性 1. **单调性**:队列元素按严格递增或递减排列。 2. **双端操作**:支持队头出队(维护窗口范围)和队尾出队(维护单调性)。 3. **高效性**:每个元素最多入队和出队一次,总时间复杂度$O(n)$。 --- #### 三、例题与解析 ##### 例题1:滑动窗口最大值(LeetCode 239) **问题**:给定数组和窗口大小$k$,返回每个窗口的最大值。 **思路**: - 使用递减队列存储**候选最大值索引**。 - 队头元素超出窗口范围时出队。 - 新元素入队前,移除队尾比它小的元素。 **代码示例**: ```python def maxSlidingWindow(nums, k): from collections import deque q = deque() result = [] for i, num in enumerate(nums): while q and nums[q[-1]] <= num: q.pop() q.append(i) if q[0] == i - k: q.popleft() if i >= k - 1: result.append(nums[q[0]]) return result ``` ##### 例题2:求区间最小值(洛谷P1886) **变型**:将队列改为单调递增,其余逻辑类似。 --- #### 四、思维导图 ```mermaid graph TD A[单调队列] --> B[定义] A --> C[特性] C --> C1[单调性] C --> C2[双端操作] A --> D[应用场景] D --> D1[滑动窗口极值] D --> D2[动态规划优化] D --> D3[最大子矩形问题] A --> E[操作步骤] E --> E1[去尾:维护单调性] E --> E2[删头:维护窗口范围] ``` --- #### 五、练习思路 1. **初级阶段** - 题目:滑动窗口最小值、连续子数组最大和。 - 目标:掌握基本操作和单调性维护。 2. **中级阶段** - 题目:二维滑动窗口极值(如LeetCode 1438)、带约束的极值问题。 - 目标:扩展至复杂场景,结合前缀和等技巧。 3. **高级阶段** - 题目:动态规划优化(如多重背包问题优化)、复杂数据结构结合。 - 目标:理解单调队列在优化时间复杂度中的作用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值