2020算法课最后一次思路回顾

快速排序

整体思路:

  1. 划分,找基准点x = nums[(l + r) >> 1]这个最好理解
  2. 用双指针两端向中间遍历,在右边找到一个比x小的数,在右边找到一个比x大的数,再交换。重复直到i <= j。
    这种方法与教材不同的是把基准点也放进去继续递归了
  3. 分别递归区间(l, j)和(j + 1, r)

归并排序

  1. 边界条件l < r,二分mid = l + r >> 1,分别递归区间(l, mid)和(mid + 1, r)
  2. 递归到最底层,自底向上对当前划分的两个数组进行排序合并

第k小元素

如果待排序数组的规模较小则直接采用堆排序,若数组规模较大则采用以下方法

  1. 将n个元素分为n / 5组取上界,并且将每组的5个元素排序
  2. 求出n / 5组每一组的中位数得到数组A
  3. 求数组A的中位数得到mid为划分基准,将数组划为3种情况:A1 = 小于mid;A2 = 等于mid;A3 = 大于mid
    if len(A1) >= k:第k小元素在A1中,这时递归查找即可
    elif:len(A1) + len(A2) >= k:mid即为第k小元素
    else:在A3中递归寻找第k - len(A1) + len(A2)小的元素

最近点对

  1. 计算得到所有点x坐标的中位数m,以x = m将点划分为左右两部分l和r
  2. 先递归的求得左右两部分的最小距离d1和d2,也就是先递归到最底层
  3. d = min(d1, d2),得到区间(m - d, m + d),在该区间寻找是否存在一个点p1在左区间一个点p2在右区间使得他们之间的距离d3小于d。如果存在则d3为最终结果,否则d为最终结果。
  4. 根据鸽笼原理可证明在区间(m - d, m + d)内每个点最多只需要比较6个点就能得到距离最近的点

    右边的点p只需要和左边d * 2d的矩形中的点比较即可得到与p最近的那个点
    又因为左区间所有点的的距离最小为d,根据鸽舍原理每个矩形最多只能有一个点在内,也就是说p最多只需要和6个点比较就能找到左边与其距离最小的那个点。

寻找凸包

  1. 寻找到最下且最左的点P0,将这个这个点与其他n - 1个点连线,并将这n - 1个点按照其与P0的角度排序
  2. 将P0,P1,P2压入一个栈中,从P2开始判断接下来的点Pi,如果Pi不能与栈中的点构成凸包,则弹出栈中元素,直至能构成凸包再把Pi加入栈中

矩阵连乘

矩阵连乘问题具有最优子结构和子问题重叠的性质,所以可以用动态规划来解决
f [ i ] [ j ] f[i][j] f[i][j]为矩阵i连乘到矩阵j的代价, w [ i ] w[i] w[i]保存第一个矩阵的行列以及剩余n - 1个矩阵的行。
由于如果两个矩阵分别为A * B和C * D,它们相乘的代价为A * B * D
所以用k来分割矩阵i到矩阵j,则有
f [ i ] [ j ] = m i n ( f [ i ] [ k ] + f [ k + 1 ] [ j ] + w [ i − 1 ] ∗ w [ k ] ∗ w [ j ] ) f[i][j] = min(f[i][k] + f[k + 1][j] + w[i - 1] * w[k] * w[j]) f[i][j]=min(f[i][k]+f[k+1][j]+w[i1]w[k]w[j])
k的取值为i ~ j - 1
枚举的方法为:

  1. 先遍历区间长度len
  2. 遍历区间的左节点i,则右节点为i + len - 1
  3. 遍历分割点k
    问题的初始值为 f [ i ] [ i ] = 0 f[i][i] = 0 f[i][i]=0i取值为1~n,因为单一矩阵不需要相乘,代价为0
    问题的返回值为 f [ 1 ] [ n ] f[1][n] f[1][n],即n个矩阵相乘的最小代价

钢条切割

f [ i ] = m a x ( f [ i − j ] + v [ j ] ) f[i] = max(f[i - j] + v[j]) f[i]=max(f[ij]+v[j]),j为价格表中的钢条长度
初始值为:f[0] = 0
实现方法为先令 t e m p = f l o a t ( ′ − i n f ′ ) temp = float('-inf') temp=float(inf),再枚举j,每次取较大的值
最后令 f [ i ] = t e m p f[i] = temp f[i]=temp

最长公共子序列

f [ i ] [ j ] = 0 ; i = 0 , j = 0 f [ i ] [ j ] = f [ i − 1 ] [ j − 1 ] + 1 ; i , j > 0 且 x i = y j f [ i ] [ j ] = m a x ( f [ i ] [ j − 1 ] , f [ i − 1 ] [ j ] ) ; i , j > 0 且 x i ! = y j f[i][j] = 0; i = 0, j = 0 f[i][j] = f[i - 1][j - 1] + 1; i, j > 0且xi = yj f[i][j] = max(f[i][j - 1], f[i - 1][j]); i, j > 0且xi != yj f[i][j]=0;i=0,j=0f[i][j]=f[i1][j1]+1;i,j>0xi=yjf[i][j]=max(f[i][j1],f[i1][j]);i,j>0xi!=yj

最优二叉搜索树

f [ i ] [ j ] = f [ i ] [ k − 1 ] + f [ k + 1 ] [ j ] + w [ i ] [ j ] w [ i ] [ j ] = w [ i ] [ j − 1 ] + p [ j ] + q [ j ] f o r i i n r a n g e ( 1 , n + 1 ) : f [ i ] [ i − 1 ] = q [ i − 1 ] w [ i ] [ i − 1 ] = q [ i − 1 ] f[i][j] = f[i][k - 1] + f[k + 1][j] + w[i][j] w[i][j] = w[i][j - 1] + p[j] + q[j] for i in range(1, n + 1): f[i][i - 1] = q[i - 1] w[i][i - 1] = q[i - 1] f[i][j]=f[i][k1]+f[k+1][j]+w[i][j]w[i][j]=w[i][j1]+p[j]+q[j]foriinrange(1,n+1):f[i][i1]=q[i1]w[i][i1]=q[i1]

流水作业调度问题

  1. 先把所有作业的ai和bi放在一起,从这之中选个最小的
  2. 如果是bi的话这个作业i就放最后,如果是ai的话这个作业就放最前,把这个已经安排好的作业从作业集中删除。3. 重复上述步骤即可。

活动选择问题

为了使活动安排尽可能的多,每次选择结束时间最早的活动
满足最优子结构和贪心选择性

最短路径问题

  1. 令S = {v0},T = {其他顶点},dist[i]为v0带vi的距离
  2. 从T选择一个距离v0最小的点加入S中,修改dist使得每一个vi到v0的距离都是最短路径
  3. 重复2,使得点全部加入S为止
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值