来个板子
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<stdio.h>
#include<math.h>
#include<algorithm>
#include<string.h>
#include<iomanip>
#define endl '\n'
using namespace std;
typedef long long ll;
typedef pair<int, int> P;
const int maxn = 5e5 + 7;
const int maxm = 5e4 + 7;
const int inf = 0x3f3f3f3f;
const double eps = 1e-6;
int head[maxn],tot;
int n,m,s,f[maxn][30],lg[maxn],h[maxn];
struct edge{
int to,next;
}e[maxn<<1];
void add(int u,int v){
e[++tot].to=v;
e[tot].next=head[u];
head[u]=tot;
}
void dfs(int x,int fa){
h[x]=h[fa]+1;//子节点深度比父节点大一
f[x][0]=fa;//初始化当前节点父亲为自己
for(int i=1;(1<<i)<=h[x];i++)f[x][i]=f[f[x][i-1]][i-1];//从下往上倍减找父节点
for(int i=head[x];i;i=e[i].next){ //意思是f的2^i祖先等于f的2^(i-1)祖先的2^(i-1)祖先
if(e[i].to!=fa)dfs(e[i].to,x);//找到叶子节点前一直递归
}
}
int LCA(int x,int y){
if(h[x]<h[y])swap(x,y);//假设x是最深的节点
while(h[x]>h[y])x=f[x][lg[h[x]-h[y]]-1];//让两个节点一样深
if(x==y)return x;
for(int i=lg[h[x]]-1;i>=0;i--){
if(f[x][i]!=f[y][i]){//如果不一样那么肯定没有到达lca ,因为两个节点的lca 向上的节点就是一样的了
x=f[x][i],y=f[y][i];
}
}
return f[x][0];
}
int main(){
scanf("%d %d %d",&n,&m,&s);
for(int i=1;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
dfs(s,0);
for(int i=1;i<=n;i++)lg[i]=lg[i-1]+(1<<lg[i-1]==i);//预处理(不太懂)
while(m--){
int a,b;
scanf("%d%d",&a,&b);
printf("%d\n",LCA(a,b));
}
return 0;
}
昨天做了一个LCA的题,感觉挺不错的,记录一下。
Bond
题目大意:
给出N座城市,M条双向道路,以及每一条道路上所需要的花费。
给出Q次询问,每次询问两座城市st以及en,我们需要求出所有从st到en的最短路径上的最大边长。
题解:LCA+MST(最小瓶颈路)
AC代码:
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<stdio.h>
#include<math.h>
#include<algorithm>
#include<string.h>
#include<iomanip>
#define endl '\n'
using namespace std;
typedef long long ll;
typedef pair<double,int> P;
const int maxn = 5e4 + 7;
const int inf = 0x3f3f3f3f;
const double eps = 1e-6;
struct node1{//链式前向星存图
int u,v,f;
bool operator <(const node1 &a)const{
return a.f<f;
}
}qu[maxn*2];
struct node2{//最小生成树节点,邻接表存图
int x,y;//x表示下一个节点,y表示该节点到x这条边的权值
node2(int x=0,int y=0):x(x),y(y){};
};
vector<node2>a[maxn];//邻接表存图
int n,m,pre[maxn],fa[maxn],rk[maxn],cost[maxn];//pre[x]表示x的父亲(并查集),fa[x]表示x的父亲(MST),rk[x]表示节点x的深度,cost[x]表示MST上边的权值
int anc[maxn][30],maxcost[maxn][30];
int find(int x){//找到父亲
while(x!=pre[x])x=pre[x];
return x;
}
void dfs(int u,int f,int depth){//DFS预处理MST
rk[u]=depth;//记录当前节点的深度
fa[u]=u;//将当前节点父亲初始化为自己
for(int i=0;i<a[u].size();i++){
int v=a[u][i].x;
int w=a[u][i].y;
if(v!=f){//未遍历到父节点,继续DFS
dfs(v,u,depth+1);
fa[v]=u;//回溯更新已遍历到的节点的父亲
cost[v]=w;//更新根节点到V的距离
}
}
}
void lca(){
for(int i=1;i<=n;i++){//anc[i][j]表示i节点的第2^j级祖先
anc[i][0]=fa[i];//将父节点初始化
maxcost[i][0]=cost[i];//权值初始化
for(int j=1;(1<<j)<=n;j++){//还没有父亲
anc[i][j]=-1;
}
}
for(int j=1;(1<<j)<=n;j++){
for(int i=1;i<=n;i++){
if(anc[i][j-1]!=-1){
anc[i][j]=anc[anc[i][j-1]][j-1];//倍增找父亲
maxcost[i][j]=max(maxcost[i][j-1],maxcost[anc[i][j-1]][j-1]);//更新i的第2^j级祖先的最大权值
}
}
}
}
int query(int x,int y){
if(rk[x]<rk[y])swap(x,y);//默认x深度更深
int k,ans=-inf;
for(k=1;(1<<(k+1)<=rk[x]);k++);//找到级数
for(int i=k;i>=0;i--){//从x的深度找到y的深度
if(rk[x]-(1<<i)>=rk[y]){
ans=max(ans,maxcost[x][i]);
x=anc[x][i];
}
}
if(x==y)return ans;//如果y就是x的祖先,那么直接返回答案
for(int i=k;i>=0;i--){//如果y不是x的祖先
if(anc[x][i]!=-1&&anc[x][i]!=anc[y][i]){//x和y一起向上找祖先并更新答案
ans=max(ans,maxcost[x][i]);
x=anc[x][i];
ans=max(ans,maxcost[y][i]);
y=anc[y][i];
}
}
ans=max(ans,max(cost[x],cost[y]));//答案取最大值
return ans;
}
int main(){
int flag=1;
while(scanf("%d%d",&n,&m)!=EOF){
if(flag==0)printf("\n");
flag=0;
for(int i=0;i<m;i++){//边
scanf("%d%d%d",&qu[i].u,&qu[i].v,&qu[i].f);
}
sort(qu,qu+m);//排序
for(int i=0;i<=n;i++){
a[i].clear();
pre[i]=i;
}
for(int i=0;i<m;i++){//建图
int x=find(qu[i].u);
int y=find(qu[i].v);
if(x!=y){
pre[x]=y;
a[x].push_back(node2(y,qu[i].f));
a[y].push_back(node2(x,qu[i].f));
}
}
dfs(1,-1,0);//LCA预处理
lca();//LCA
int q;
scanf("%d",&q);
while(q--){
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",query(x,y));
}
}
return 0;
}