神经网络识别手写优化(三)

前言

本文是为了实现存储自己训练好的模型 结构和参数,以及加载训练好的模型进行预测。

代码

保存

    def save(self,filename):
        """
        模型保存
        :param filename: 文件名 
        :return: 
        """
        data ={ "sizes": self.sizes, #模型结构
                "weights": [w.tolist() for w in self.weights], #tolist转换为列表类型
                "biases": [b.tolist() for b in self.biases],
                "cost": str(self.cost.__name__) #保存一下损失函数
        }
        f=open(filename,"w")
        json.dump(data,f)
        f.close()

加载

def load(filename):
    """
    加载模型
    :param filename: 
    :return: 
    """
    f=open(filename,"r")
    data=json.load(f)
    f.close()
    cost=getattr(sys.modules[__name__],data["cost"]) #找对象
    net=Network(data["sizes"],cost=cost)
    net.weights=[np.array(w) for w in data["weights"]]
    net.biases=[np.array(b) for b in data["biases"]]

    return net
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值