1069. The Black Hole of Numbers (20)
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the "black hole" of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0, 10000).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation "N - N = 0000". Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:6767Sample Output 1:
7766 - 6677 = 1089 9810 - 0189 = 9621 9621 - 1269 = 8352 8532 - 2358 = 6174Sample Input 2:
2222Sample Output 2:
2222 - 2222 = 0000
之前写过这个题,看了一下,还可以,就不改了,按流程来即可。
#include<iostream> #include<string> #include<algorithm> #include<iomanip> using namespace std; int main() { int n,s=0; int a[4],b[4]={0,0,0,0}; cin>>n; while(s!=6174) { for(int i=0;i<4;i++) { a[i]=n%10; n=n/10; } if(a[0]==a[1]&&a[0]==a[2]&&a[0]==a[3]) { cout<<a[0]<<a[1]<<a[2]<<a[3]<<" - "; cout<<a[0]<<a[1]<<a[2]<<a[3]<<" = 0000"<<endl; break; } sort(a,a+4); for(int i=0;i<4;i++) b[i]=a[3-i]; int a1=0,b1=0; for(int i=0;i<4;i++) { a1=a1*10+a[i]; b1=b1*10+b[i]; } s=b1-a1; n=s; cout<<setfill('0')<<setw(4)<<b1<<" - " <<setfill('0')<<setw(4)<<a1<<" = " <<setfill('0')<<setw(4)<<s<<endl; } return 0; }