HDU1176数塔变形-免费馅饼

免费馅饼

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 24797    Accepted Submission(s): 8411


Problem Description
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:

为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
 

Input
输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。
 

Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。

 

Sample Input
      
      
6 5 1 4 1 6 1 7 2 7 2 8 3 0
 

Sample Output
      
      
4
 

Author
lwg
 

自上而下的状态转移,1-4秒的状态特判
#define DeBUG
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <stack>
#include <queue>
#include <string>
#include <set>
#include <sstream>
#include <map>
#include <list>
#include <bitset>
using namespace std ;
#define zero {0}
#define INF 0x3f3f3f3f
#define EPS 1e-6
#define TRUE true
#define FALSE false
typedef long long LL;
const double PI = acos(-1.0);
//#pragma comment(linker, "/STACK:102400000,102400000")
inline int sgn(double x)
{
    return fabs(x) < EPS ? 0 : (x < 0 ? -1 : 1);
}
#define N 100005
int dp[N][13];
int b[N][13];
int main()
{
#ifdef DeBUGs
    freopen("C:\\Users\\Sky\\Desktop\\1.in", "r", stdin);
#endif
    int n;
    while (scanf("%d", &n), n)
    {
        int x, t;
        memset(dp, 0, sizeof(dp));
        memset(b, 0, sizeof(b));
        int maxt = 1;
        for (int i = 0; i < n; i++)
        {
            scanf("%d%d", &x, &t);
            x++;
            b[t][x]++;
            maxt = max(maxt, t);
        }
        for (int i = 1; i < 5; i++)
        {
            for (int j = 6 - i; j <= 6 + i; j++)
            {
                dp[i][j] = b[i][j];
                if (j - 1 >= 7 - i && j - 1 <= 5 + i)
                    dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + b[i][j]);
                if (j >= 7 - i && j <= 5 + i)
                    dp[i][j] = max(dp[i][j], dp[i - 1][j] + b[i][j]);
                if (j + 1 >= 7 - i && j + 1 <= 5 + i)
                    dp[i][j] = max(dp[i][j], dp[i - 1][j + 1] + b[i][j]);
            }
        }
        for (int i = 5; i <= maxt; i++)
        {
            for (int j = 1; j <= 11; j++)
            {
                dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + b[i][j]);
                dp[i][j] = max(dp[i][j], dp[i - 1][j] + b[i][j]);
                dp[i][j] = max(dp[i][j], dp[i - 1][j + 1] + b[i][j]);
            }
        }
        int maxx = 0;
        for (int i = 1; i <= 11; i++)
        {
            maxx = max(dp[maxt][i], maxx);
            // printf("%d,", dp[maxt][i]);
        }
        printf("%d\n", maxx);
    }

    return 0;
}


自下而上的状态转移,由于上面的状态一定可以由它下面的三个状态得到,所以无需特判,和数塔类似
#define DeBUG
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <stack>
#include <queue>
#include <string>
#include <set>
#include <sstream>
#include <map>
#include <list>
#include <bitset>
using namespace std ;
#define zero {0}
#define INF 0x3f3f3f3f
#define EPS 1e-6
#define TRUE true
#define FALSE false
typedef long long LL;
const double PI = acos(-1.0);
//#pragma comment(linker, "/STACK:102400000,102400000")
inline int sgn(double x)
{
    return fabs(x) < EPS ? 0 : (x < 0 ? -1 : 1);
}
#define N 100005
int dp[N][13];
int main()
{
#ifdef DeBUGs
    freopen("C:\\Users\\Sky\\Desktop\\1.in", "r", stdin);
#endif
    int n;
    while (scanf("%d", &n), n)
    {
        memset(dp, 0, sizeof(dp));
        int maxt = 0;
        int x, t;
        for (int i = 0; i < n; i++)
        {
            scanf("%d%d", &x, &t);
            dp[t][++x]++;
            maxt = max(maxt, t);
        }
        for (int i = maxt - 1; i >= 1; i--)
        {
            for (int j = 1; j <= 11; j++)
            {
                dp[i][j] = max(max(dp[i + 1][j], dp[i + 1][j - 1]), dp[i + 1][j + 1]) + dp[i][j];
                // printf("%d,", dp[i][j]);
            }
            // printf("\n");
        }
        printf("%d\n", max(max(dp[1][6], dp[1][5]), dp[1][7]));
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值