论提高人工智能思考和行动准确性的两种方式
由于人工智能的能力过于庞杂,在使用人工智能工具完成具体工作的时候,需要限制人工智能的发散性而提高人工智能的思考和行动的准确性和方向性,据我观察目前有两种形式:
-
撰写promot(提示语)规定AI的角色,可以做什么,不可以做什么。这是普遍在使用的一种形式,甚至形成了一门学问,好比通过AI我们可以不再学习撰写工作报告,却要学习撰写promot, 据说也是有一定的局限性,包括prompt工程复杂, 编写高质量的Prompt需要深入理解AI模型的工作原理和任务需求,这对于非专业人士来说可能是一个挑战;无法应对开放式问题, 在开放式任务中,很难提前预设所有可能的prompt;对模型的依赖性强, prompt的效果在很大程度上取决于模型的训练数据和架构。
-
随着LLM可以转变为agent,可以使用外部的工具,另外一种就是限制AI可以使用的工具,比如,让AI操控一辆仅可以前后移动的小车来完成某项任务,或者AI智能使用铅笔来绘画,这就限制了AI思考和行动的可能性,也就提高了其完成任务的准确性。之所以有这个想法是之前做了一个构建AI agent的工作,把医学预测模型接入到AI中,医学预测模型的优点是通过大数据的拟合的算法对患者数据进行判断或者预测,算是预测得出结论比较准确的一种方式,算是一种工具,而AI如果只能使用预测模型对患者的情况进行判断,判断结果的准确性就有保障,LLM则是在给出诊疗建议等方面进行发挥,因为有了关键的结论作为基础,AI怎么发挥都不会很离谱。相似的场景,还有统计学等,大模型做统计可以出结果,但是没人敢信,所以接入外部的统计工具是两全其美的做法。
非专业人士,说多了就错了,供参考。