- 博客(217)
- 资源 (1)
- 收藏
- 关注
原创 从已经发表的元分析中获取先验数据并将其应用于贝叶斯分析
使用元分析中提取的均值和标准误来定义先验分布的参数。均值(μ):元分析的综合效应量。标准差(σ):元分析中效应量的标准误或方差的平方根。# 定义先验# 拟合贝叶斯模型prior = c(),# 查看模型摘要从已发表的元分析中提取先验数据并将其应用于贝叶斯模型,是一种有效利用现有研究成果的方法。通过合理选择和设定先验,可以增强模型的信息量和可靠性。务必确保先验的合理性和透明度,并通过敏感性分析和模型比较来验证先验的有效性。
2025-06-09 12:52:40
576
原创 通过meta分析确定先验并进行贝叶斯分析的构想
假设元分析得到的效应量均值()和标准差(sd_effect)可以作为回归系数的先验。常用的先验分布包括正态分布、学生t分布等。# 假设的元分析结果mean_effect <- 0.5 # 综合效应量均值sd_effect <- 0.1 # 综合效应量标准差# 定义先验通过元分析获取综合效应量及其方差,并将其作为贝叶斯模型的先验信息,可以显著提升模型的准确性和可靠性。进行元分析:收集相关研究,计算综合效应量及其方差。设定先验:将元分析结果转化为适当的先验分布,并应用于贝叶斯模型。验证和调整。
2025-06-09 12:39:20
815
原创 贝叶斯医学分析中“先验”的如何进行选择(文献解读)
作者:Callum Taylor, Kathryn Puxty, Tara Quasim, Martin Shaw文章标题:Understanding Bayesian analysis of clinical trials: an overviewfor clinicians 期刊名称:Critical Care Science 发表年份:2025 卷号:37 页码:e20250267在实际医学数据分析中选择先验需遵循。
2025-06-08 16:35:44
636
原创 贝叶斯定理与医学分析(t检验场景)
贝叶斯定理可以用在各种领域,在不同领域,先验和后验的定义会有所不同,所以需要具体进行研究。在医学领域, pubmed近年发表了多篇关于贝叶斯定理在医学数据分析中使用的综述性文章,体现了贝叶斯分析逐渐重要的地位。因为以P值为代表的频率统计学方法在我们心中根深蒂固,这里想通过展示贝叶斯方法在各种频率学方法的场景下的表现,在帮助理解贝叶斯方法的优势。贝叶斯主要属于参数型统计,观察某参数(先验),在新数据显的改变(后验);所以,贝叶斯适合的医学研究是以贝叶斯的结果作为主要结论的研究设计,比如随机对照研究设计。
2025-06-08 13:57:15
624
原创 贝叶斯回归分析连续变量的结果的解释
贝叶斯回归分析在医学研究中具有独特优势,特别适用于连续变量分析。与传统的二分类变量分析不同,连续变量模型(如剂量与疗效关系)能提供更丰富的结论:包括剂量-反应关系的强度、方向和不确定性,特定剂量下的疗效预测,以及最优剂量区间的概率估计。贝叶斯方法直接量化概率结论(如"剂量增加1单位疗效提高0.2-0.5的概率为95%"),特别适合剂量探索、精准医疗等需要精细化治疗方案的场景。相比频率学派方法,贝叶斯回归在小样本、需要利用先验知识或回答概率问题时更具优势,为临床决策提供更直观的概率依据。
2025-06-04 15:24:21
921
原创 使用Bambi包进行贝叶斯混合效应模型分析
本文系统介绍了使用Bambi包进行贝叶斯混合效应模型分析的全流程关键步骤。在建模前需通过数据探索、结构分析和变量预处理确保数据质量;建模中要合理设置模型结构、先验分布,并进行严格的MCMC收敛性诊断;建模后需通过方差分解、后验预测检查等方法验证模型合理性。文章还提供了常见问题(如不收敛、样本量不足等)的解决方案,并强调通过先验敏感性分析和可视化增强结果的可解释性。该指南为研究人员提供了从数据准备到模型优化的完整技术路线。
2025-06-02 20:41:01
710
原创 混和效应模型在医学分析中的应用
混合效应模型(多层/随机效应模型)在医学研究中广泛应用于处理层次结构数据,能同时分析固定效应(群体趋势)和随机效应(个体差异)。典型场景包括:1)纵向数据(如追踪血糖变化),处理缺失值并分析个体差异;2)多中心试验(如抗肿瘤药物研究),分离中心效应与治疗作用;3)家庭聚集性研究(如儿童肥胖),校正家庭相关性;4)生存分析(如术后生存期),结合随机效应;5)遗传研究(如基因表达),控制家系结构影响;6)诊断一致性评价(如CT阅片),量化观察者差异。其优势在于灵活性、效率及个体化解释,但需注意随机效应的正态性假
2025-06-02 20:07:58
1050
原创 AI 大模型辅助临床科研发表训练营
摘要: “AI大模型辅助临床科研发表训练营”由医研趣与和鲸社区联合推出,针对临床科研人员面临的时间紧张、技术门槛高、学习成本大等痛点,提供AI驱动的全流程论文撰写解决方案。训练营独创“支点原则”,通过规范化文献、统计结果等专业材料引导AI生成高质内容,覆盖科研规划、数据分析、可视化、论文撰写及格式整理五大场景。课程特色包括免提示词技巧、纯AI工具链操作及手把手教学,助力高效完成试验设计、图表生成、文献匹配等任务。适合各阶段科研人员提升效率,实现从数据到发表的智能化突破。 (注:摘要严格控制在150字内,突出
2025-05-24 09:40:25
505
原创 单细胞测序数据分析试验设计赏析(二)
接着,基于这些 Hub 基因,使用多种机器学习算法构建 AD 诊断模型,经 5 折交叉验证评估模型性能,选取最佳模型并用 SHAP 进行解释和可视化。还开展基因功能分析,涵盖 GSEA、免疫浸润分析、免疫检查点分析等,同时通过 RT-qPCR、数据库验证和单细胞转录组分析对基因功能进行实验验证。这次的单细胞测序数据分析的试验设计是单细胞测序分析+机器学习(with SHAP分析),也是常见的试验设计之一,重点是可以用于筛选鉴定基因调控网络,也可以是构建(基因)预测模型。
2025-05-04 15:10:16
775
原创 单细胞测序试验设计赏析(一)
单细胞测序试验设计赏析(一)单细胞测序试验设计中,单细胞测序技术通常会结合其它的技术来共同说明问题,或者结合年龄、性别等临床数据,进行分层分析说明问题以下以发表文章来进行一定的分析。Abstract。
2025-05-03 21:27:02
1015
原创 单细胞测序数据分析流程的最佳实践
单细胞测试数据分析流程是整个论文数据分析过程中相对固定的部分,有一定的标准流程,以下整理了发表论文的相关内容供简要了解,详细内容可以参照2019年发表的综述:Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol. 2019 Jun 19;
2025-05-03 18:01:38
971
2
原创 医生视角下转录组学的生物信息学分析
转录组学的生物信息学分析是医生解决临床与科研问题的有力工具。这里罗列医学转录组学相关的几个概念,从使用者(医生)的角度看待理解相关技术,为后续使用该技术说明临床和科研问题奠定基础。
2025-05-02 13:12:27
517
原创 举例谈谈数据收集的“主题性”
收集数据的技巧也是数据分析技巧的一部分。人口统计学信息:年龄(age,单位:years)性别(gender)住院相关:住院时长(the duration of the hospital stay)ICU 住院天数(ICU Hospitalization Days)临床结果相关:28 天的临床结果(clinical outcomes at 28 days)生命体征:心率(Heart Rate,单位:beats per minute)
2025-04-03 12:51:10
876
原创 一个卒中继发癫痫的数据集和初步分析
一、并发症uremia - 尿毒症dvt - 深静脉血栓形成fatty_liver - 脂肪肝疾病或肝脂肪变性diabetes - 糖尿病hypertension - 高血压coronary_disease - 冠状动脉疾病atrial_fibrillation - 一种心律失常,即心房颤动cerebral_hernia - 脑疝,大脑从正常位置移位的病症hydrocephalus - 脑积水,大脑中脑脊液过多的情况。
2025-04-02 15:32:22
1050
原创 模型解释的另一个选择--Dalex
当使用 type=‘dropout_loss’ 时,y 轴代表的是模型效能的变化,也就是移除某个特征后模型性能的下降程度。SHAP分析是最流行的模型解释的包,是模型解释的标杆,可以进行全局性解释和局部解释,对标SHAP,Dalex是另外一个功能比较齐全的python包,采用不同的算法,是SHAP之外的选择。条件依赖图展示了在特定特征值下,模型预测结果的分布情况。Dalex包功能是比较齐全,常用的全局性和局部性解释功能可以实现SHAP的功能,只是算法不同,而变量层面的解释功能,感觉可解释性不如SHAP。
2025-04-02 13:21:11
303
原创 交互作用分析体会总结
交互作用分析的内容不多,往往占的比重也不大,单独作为研究的主要内容并不适合,还是要和其他的研究进行整合。也不好说全对,供大家参考。三种交互作用分析的项目可以在和鲸社区搜索“交互作用”获得。
2025-03-30 11:18:54
313
原创 交互作用扫描的另外一个选择--vivid包(R)
之前的帖子使用了批量扫描变量间交互作用的包-iml的interaction函数,在其中“交互作用通过弗里德曼H统计量(H平方检验统计量的平方根)来衡量,其取值范围在0(无交互作用)到1之间(1表示因交互作用导致的f(x)标准差达到100% )”。如下图所示(图中变量并没有交互作用)。除了iml包,vivid包也是一个可以进行交互作用扫描的R包,并且提供了更加丰富的可视化选择,在这里进行介绍。虽然常听说交互作用分析,但是在个人尝试的几个医学数据集中还没有发现明显的交互作用,所以在此只做技术上的探讨。
2025-03-26 12:28:23
216
原创 从技术角度看交互作用分析
以上步骤整合在一起,SHAP分析中对交互作用的筛查,结合传统的使用P值对交互作用进行定性,形成一个相对完整的交互作用分析过程。还有interactionR和epiR包可以用来进行交互作用的分析,要求参与分析的两个变量是二分类变量,可以尝试进行探索。
2025-03-19 16:41:05
277
原创 绘制列线图并解释线性模型的Python包-nomogram-explainer(记我的第一个pypi项目)
SHAP分析是目前可以对预测模型同时进行全局性和局部性两种解释唯一的包,其它的包要么仅能进行局部解释,比如LIME,要么只能进行全局性解释,比如xgboost的变量重要性。列线图(算法)是展示线性模型的一种算法,目前在了解该算法的基础上,我用python的pyplot包绘制了列线图,过程中发现该算法可以发展成为解释线性模型的工具,且可以进行全局性和局部性解释。撰写相关代码期间,也曾分享过代码,但是总觉得不够方便,最后,在AI的辅助下,也终于把相关的代码上传到pypi来发布。绘制列线图,使用plotly包构建
2025-03-09 20:04:49
814
原创 Python绘制数据分析中经典的图形--列线图
列线图是数据分析中的经典图形,通过背后精妙的算法设计,展示线性模型(logistic regression 和Cox)中各个变量对于预测结果的总体贡献(线段长短),另外,线段上有刻度,使得列线图兼具实用功能:在实际操作中,可以将某套待预测的变量值通过列线图转变为一个个得分,最终相加得到总得分,而总得分对应的概率轴上的刻度,就是这套变量通过预测模型得到的风险概率。
2025-03-09 19:03:06
657
原创 我的两个医学数据分析技术思路
当拿到一份数据,可以先做预分析,如果得到的相关变量较多,就可以做预测模型,如果不够多,就可以考虑独立危险因素分析。个人感觉,数据分析类的研究关键在于数据,大样本,自己收集的,有特点的数据更容易做出有意义的研究。
2025-03-06 16:47:43
795
原创 决策曲线分析(DCA)指标和作用梳理
模型和后续措施是DCA分析中两个重要的评估对象,y轴评估模型的成本和收益(净阈值和tradeoff值),x轴确定后续措施的损害和收益,单用y轴可以评估模型效率并确定决策阈值范围,而x轴和y轴结合确定具体的决策阈值。
2025-03-03 10:28:44
1155
原创 AI关于SHAP分析与列线图(算法)解释线性模型矛盾之处的解释
两种解释方法在个案的局部解释方面,有矛盾之处,其背后的原理已经超出了我的知识范畴,以下是询问AI的几个问题,希望能从中梳理出一个合理的解释。我最后的结论是,列线图(算法)在局部解释方面是一种相对简化和粗糙的方法,但是如果线性模型(也是一种简化和粗糙的模型)适合处理这样的数据(模型有较高的效能),那么也就可以用列线图算法来进行解释,也就是说,如果对于数据来说,线性模型是可以接受的,那么列线图(算法)来解释模型也是可以接受的。
2025-02-28 22:05:25
1017
原创 对cox模型的解释(SHAP VS 列线图算法)
对比来说,这两种解释方式得到的结果有相似的地方也有矛盾的地方,特别是局部性解释。一时间如何看待这两种解释方法,以及他们之间的矛盾,一时还没有思路,留待以后更新。
2025-02-28 15:42:47
294
原创 python绘制cox列线图及绘制指南
其实,代码本来不是想绘制列线图的,是为了用列线图算法来解释线性模型的,但是绘制好列线图也是应该的,后续在这两方面都会继续完善,欢迎大家继续关系。
2025-02-27 16:14:32
1199
原创 对cox列线图进行解析,作为后续python模仿绘制的基础
这是网上的一个Cox数据列线图,与二分类数据的列线图不同的是,这个列线图有两条概率线,分别是3年和6年的结局发生的风险概率,而各个变量的得分和总分都是固定的。所以剩下的就是弄清楚概率是如何计算出来的就可以了,推测应该是和风险预测函数有关。所以COX版本的列线图大部分和之前的列线图大部分都是相似的,代码不需要太多的改动,先测试一下lifelines是如何进行cox分析的,应该就能绘制python版本的列线图了,敬请大家期待。这个帖子主要的目的是解析cox列线图,做一些准备的工作。
2025-02-26 17:01:29
221
原创 SHAP分析解读心率和运动时长与卡路里消耗之间的关系
SHAP分析不仅仅是一种解释模型的工具,还是一种观察变量间关系的利器,让我们可以从不同的角度来观察变量间的关系,实现对变量间关系的更加全面的理解。以上的分析展示了变量间有趣的关系,关于所展示的变量间关系,对于二分类的结局变量,我们可以理解为对结局的支持程度,但是对于结局是连续变量的情况,还需要更多的讨论,这里尝试解释和大家探讨。
2025-02-26 11:41:52
993
1
原创 玩转列线图
你有什么主意让列线图变得更加有趣一点吗?目前的制作的python绘制列线图的代码已经进一步完善了,之前连续变量的标签容易挤到一起,现在可以手动进行调整,增加了颜色主题,更多的设定。
2025-02-25 14:10:49
407
原创 列线图用于线性模型的解释(一个心衰的例子)
虽然构建预测模型有很多的算法,但是线性模型一直是不可或缺的一种,线性模型具有自明性(自我解释性),一般认为展示模型中变量的系数就可以作为模型的解释,但是仔细考察,对照全局性解释和局部性解释的定义,单纯的模型系数不能相互之间比较大小,就不能说明变量的重要性,且模型系数在个案之间是一样的,不能作为局部性解释,所以我们需要发展一套算法和图形来展示线性模型的自我解释性。
2025-02-24 13:38:15
851
原创 在列线图上标记做为线性模型的局部解释
总体感觉,在列线图上改造起到一定的解释模型的作用,但是不如之前展示的使用bar图进行全局性解释和使用瀑布图进行局部解释来得直观,算是提供了一种选择。至此,虽然不完善,关于列线图和线性模型解释的想法已经差不多都实现了,后续如果有发展,就是用在cox模型上,原理是一样的,仅在实现方法生有所变化,或者和网页APP结合让局部解释的标记动态化,随着用户输入的不同而有所变化。
2025-02-23 21:08:48
230
原创 列线图算法用于解释线性模型结果展示(你更倾向于哪一种?)
设想中,列线图用于解释线性模型有两种做法,一种是在列线图的基础上进行改造,这一块并没有完全想好;另一种是借鉴列线图的算法,采用其它的图形对线性模型进行解释,这里展示的结果是后一种。
2025-02-21 22:24:16
379
原创 python版本的列线图绘制(二分类)
,总体上是类比SHAP分析,希望能实现全局解释,即比较变量之间的重要性和局部解释,即展示变量当前值对预测结果的贡献。不过,以模型解释为目的,列线图不是唯一的选择,meta_df中的值是带正负号的值,类似SHAP值,可以反映贡献的大小和方向,变量之间也是可比的,使用这个值来解释模型,也是一个考虑,直接用还是要处理一下,比如像SHAP值那样都减个平均数。今天完成的是第一步:列线图数据的计算,并且形成一个函数,输入输出可以看函数的解释,用这些数据就可以绘制列线图了,绘图部分也想着能整理成一个绘图函数。
2025-02-20 14:33:08
794
原创 列线图用于线性模型解释plot的论证
但是各个变量系数之间不可比的,比如,不能根据系数说一个变量比另外一个变量对结局更加具有影响,与SHAP分析中的shap值或者树形模型的变量重要性相比,是一种不足。列线图之所以能够比较变量间的重要性,是因为背后对线性模型的系数和变量值的乘积做了一定的标准化处理,具体来说,首先,获取各个变量系数和变量具体值乘积的最大值和最小值的差值(distance),然后将最大的distance对应的评分为100(线段最长), 其它变量按distance的比例决定各自的评分(线段的长度)。
2025-02-19 12:33:32
576
原创 使用运动心电图预测早期心力衰竭的APP
运动心电图与预测模型 APP 相结合,有望构建起更高效、精准的心力衰竭早期诊断体系。运动心电图提供了心脏在运动状态下的实时电生理信息,而预测模型 APP 则可以基于长期监测的数据,挖掘潜在的健康风险模式,实现对心力衰竭的早期预警。通过这种方式,能够让患者在症状尚不明显时就得到及时诊断和治疗,有效降低心源性猝死的发生率,为患者的生命健康保驾护航。采用xgboost算法发构建预测模型并进行评价,最后采用SHAP分析对模型的预测结果进行解释。通过Boruta变量筛选工具筛选到结局变量相关的预测变量;
2025-02-18 12:57:22
784
《一个临床数据收集/调查问卷APP》配套源代码
2024-10-28
依托SHAP值的COX版本的变量间关系描述:boruta+treeshap+立方样条拟合
2024-10-08
shiny APP 实现 tidymodels代码驱动的xgboost 模型构建、超参数调节和后概率校准
2024-10-08
食管癌远处转移机器学习web app+shiny源代码+R语言
2024-08-29
构建的Boruta+SHAP分析+立方样条回归R语言shiny应用
2024-05-08
yuce-1.0-armeabi-v7a-debug.apk
2021-07-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人