线性代数——行列式计算器Java版

我们在计算行列式的时候,是不是有个苦恼,要是有个计算机能帮你算,那可真是太好了,因为我们平时遇到的题,行列式的阶数也不是特别多,所以我自己就写了一个,利用行列式无限展开,直到变成一阶,最后在回溯,通过这样的递归求得结果。
运行结果图
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
代码的话我都放在下面:

package 行列式;

public class app {
    public static void main(String[] args) {
    	new xuanze();
    }
}
package 行列式;

import java.awt.GridLayout;

import javax.swing.JButton;
import javax.swing.JFrame;

public class xuanze extends JFrame {
	JButton j1,j2,j3,j4,j5,j6;
	
	int p=3;
	public xuanze() {
		this.setLayout(new GridLayout(6, 1));
		this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
		this.setVisible(true);
		this.setSize(100,600);
		j1=new JButton("三阶");
		j2=new JButton("四阶");
		j3=new JButton("五阶");
		j4=new JButton("六阶");
		j5=new JButton("七阶");
		j6=new JButton("八阶");
		j1.addActionListener((e)->{
			dispose();
			jsview jsview = new jsview(3);
		});
		j2.addActionListener((e)->{
			dispose();
			jsview jsview = new jsview(4);
		});
		j3.addActionListener((e)->{
			dispose();
			jsview jsview = new jsview(5);
		});
		j4.addActionListener((e)->{
			dispose();
			jsview jsview = new jsview(6);
		});
		j5.addActionListener((e)->{
			dispose();
			jsview jsview = new jsview(7);
		});
		j6.addActionListener((e)->{
			dispose();
			jsview jsview = new jsview(8);
		});
		this.add(j1);this.add(j2);this.add(j3);
		this.add(j4);this.add(j5);this.add(j6);
	}
}


package 行列式;


import java.awt.GridLayout;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JTextField;

 
public class jsview extends JFrame {
	int n;JTextField[] wu;
	int[][] wuu;
	public jsview(int n) {
		this.n=n;
		if(n==3) {
			wu=new JTextField[9];
			wuu=new int[3][3];
		}
		if(n==4) {
			wu=new JTextField[16];
			wuu=new int[4][4];
		}
		if(n==5) {
			wu=new JTextField[25];
			wuu=new int[5][5];
		}
		if(n==6) {
			wu=new JTextField[36];
			wuu=new int[6][6];
		}
		if(n==7) {
			wu=new JTextField[49];
			wuu=new int[7][7];
		}
		if(n==8) {
			wu=new JTextField[64];
			wuu=new int[8][8];
		}
		pp();
	}
	 
	int jie;JButton a=new JButton("计算");
	JButton b=new JButton("清空");
	int s=0;
	JTextField o=new JTextField("此处显示结果");
	public void pp() {
		this.setLayout(new GridLayout(n+1, n));
		this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
		this.setVisible(true);
		this.setSize((n+1)*80, n*80);
		for(int i=0;i<wu.length;i++) {
			wu[i]=new JTextField("");
			
			this.add(wu[i]);
		}
		this.add(a);
		this.add(o);
		this.add(b);
		a.addActionListener((e)->{
			for(int i=0;i<n;i++) {
				for(int j=0;j<n;j++) {
					
					int v=Integer.valueOf(wu[s].getText());
					wuu[i][j]=v;
					s++;
				}
			}
			aij aaAij=new aij();
			jie=aaAij.det(wuu);
			o.setText(""+jie);
		});
		b.addActionListener((e)->{
			dispose();
			new jsview(n);
		});
	}

}

package 行列式;

class aij {
    // A函数可用于求余子阵
    public int[][] A(int[][] a, int row, int column) {
        int[][] ans = new int[a.length - 1][a.length - 1];// ans用于储存返回的最终结果
        int[] temp = new int[(a.length - 1) * (a.length - 1)];// 临时一维数组temp用于按顺序储存剔除相应行和列元素后的数组
        int k = 0;
        // 剔除行和列并按顺序储存到temp内
        for (int i = 0; i < a.length; i++) {
            for (int j = 0; j < a[i].length; j++) {
                if (i == row - 1) {
                    continue;
                } else if (j == column - 1) {
                    continue;
                }
                temp[k++] = a[i][j];
            }
        }
        // 按顺序从temp中读取数据并储存到ans内
        k = 0;
        for (int i = 0; i < ans.length; i++) {
            for (int j = 0; j < ans[i].length; j++) {
                ans[i][j] = temp[k++];
            }
        }
        return ans;
    }

    // det用于求行列式
   public  int det(int[][] a) {
        if (a.length == 1) {
            return a[0][0];
        } else {
            int ans=0;
            for (int i = 0; i < a.length; i++) {
                ans+=a[i][0]*(int)Math.pow(-1, i)*det(A(a,i+1,1));
            }
            return ans;
        }
    }
}

看完希望大家点个赞哟!!!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值