NLP
Jack_Can
To Be Better!
展开
-
论文笔记010-《Multi-Channel Graph Neural Network for Entity Alignment》
1. 简介题目:《Multi-Channel Graph Neural Network for Entity Alignment》来源:ACL-2019链接:论文链接代码:Code和Dataset关键字:Graph Neural Network、Embedding-based、Entity Alignment2. Abstract 近年来实体对齐的工作往往受制于KGs之间的异构性以及种子实体对的约束。本文提出了一种多通道的图神经网络MUGNN来学习, 每一个通道通过不同的权重模式来编.原创 2020-12-09 10:03:28 · 1346 阅读 · 8 评论 -
论文笔记009-《A Vectorized Relational Graph Convolutional Network for Multi-Relational Network Alignment》
1. 简介《A Vectorized Relational Graph Convolutional Network for Multi-Relational Network Alignment》来源:IJCAI-2019链接:论文链接代码:[暂无]关键字:Graph Convolutional Network、Embedding-based、Entity Alignment2. Abstract 目前多关系网络(例如知识图谱)对齐工作对上层的AI应用有很重要的意义。现有的基于图卷积网络.原创 2020-12-05 16:32:36 · 931 阅读 · 0 评论 -
论文笔记008-《A Benchmarking Study of Embedding-based Entity Alignment for Knowledge Graphs》
1. 简介题目:《A Benchmarking Study of Embedding-based Entity Alignment for Knowledge Graphs》来源:VLDB-2020链接:论文链接代码:Code和Dataset关键字:Benchmarking Study、Embedding-based、Entity Alignment2. Abstract 这篇文章主要对实体对齐该领域进行了一次综合性的分析研究,调研了23种Embedding-based的实体对齐方法,.原创 2020-11-08 23:38:43 · 1906 阅读 · 3 评论 -
论文笔记004-《Knowledge Graph Alignment Network with Gated Multi-hop Neighborhood Aggregation》
1. 简介题目:《Knowledge Graph Alignment Network with Gated Multi-hop Neighborhood Aggregation》来源:AAAI-2020链接:论文链接代码:Code和Dataset2. 研究背景 由于GNN网络在识别同构子图上表现非常不错,因此应用于很多基于嵌入式的实体对齐方法。但是实际上不同KGs之间对应的实体对,其周围的邻域图结构一般不是相似的,这导致GNN不能准确进行识别。如图1: 上图中指向Kobe Brya.原创 2020-08-14 15:15:46 · 892 阅读 · 2 评论 -
论文笔记003-《Entity Alignment between Knowledge Graphs Using Attribute Embeddings》
《Entity Alignment between Knowledge Graphs Using Attribute Embeddings》1. 简介题目:《Entity Alignment between Knowledge Graphs Using Attribute Embeddings》来源:AAAI-2019链接:https://people.eng.unimelb.edu.au/jianzhongq/papers/AAAI2019_EntityAlignment.pdf代码:Cod原创 2020-07-29 16:27:26 · 2178 阅读 · 0 评论 -
翻译-Neural Snowball for Few-Shot Relation Learning
Neural Snowball for Few-Shot Relation LearningAbstract知识图谱正处于新的关系不断增长的状况,基于大量充足信息预先定义好关系的关系抽取方法不能很好的处理这种状况。在利用少量的样本来处理新的关系的目标下,我们提出了一种新颖的自展方法-Neural Snowball,通过转换现有关系的语义知识来学习新的关系。更详细地说,我们使用了关系连体网络(RSN)来学习基于已有关系及其标记数据的实例之间的关系相似性度量,然后,在给定一个新关系及其少量实例的基础上,利用原创 2020-07-21 15:31:35 · 951 阅读 · 0 评论