自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Slashyouth的博客

To Be Better !

  • 博客(34)
  • 收藏
  • 关注

原创 【Go实现】设计模式:01-创建型-单例模式

单例模式(Singleton Pattern)是一种创建型设计模式,它保证一个类只有一个实例,并提供一个全局访问点。

2024-05-11 12:46:09 740

原创 Windows锁屏壁纸下载

Windows锁屏壁纸下载工具

2024-05-11 12:26:58 493

原创 LeetCode[Java-BFS模板]

279.完全平方数  给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。  给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。  完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。问题分析  可以将每个整数看成图中的一个节点,如果两个整数之差为一个平方数,那么这两个整数所在的节点就有一条边。  要求

2021-03-17 10:57:13 393

原创 Java-遍历

遍历 ArrayListimport java.util.*; public class Test{ public static void main(String[] args) { List<String> list=new ArrayList<String>(); list.add("Hello"); list.add("World"); list.add("HAHAHAHA"); //第一种遍历方法使用 For-Each

2021-03-01 17:45:59 218

转载 Java容器

Java容器家族图容器从最大的概念来分:分为Collection和Map,区别就是Collection是一个槽的,Map是两个槽的(键值对)Collection划分为:List,Set,QueueList接口常见有:ArrayList,LinkedList,AbstractList, CopyOnWriteArrayList, Vector,StackSet接口常见有:HashSet,TreeSet,LinkedHashSet,AbstractSet,CopyOnWriteArraySet,Enum

2021-03-01 17:44:07 180

原创 论文笔记012-024

论文简记1. 《Coordinated Reasoning for Cross-Lingual Knowledge Graph Alignment》-012简介题目:《Coordinated Reasoning for Cross-Lingual Knowledge Graph Alignment》来源:AAAI-2020链接:论文链接代码:[Code和Dataset]总结  现有的实体对齐方法主要在编码知识图上选择不同,但他们通常使用类似的解码方法,独立选择每个源实体的局部最优

2021-02-01 11:58:58 703

原创 Java-map的排序

今天做统计时需要对X轴的地区按照地区代码(areaCode)进行排序,由于在构建XMLData使用的map来进行数据统计的,所以在统计过程中就需要对map进行排序。一、简单介绍Map在讲解Map排序之前,我们先来稍微了解下map。map是键值对的集合接口,它的实现类主要包括:HashMap,TreeMap,Hashtable以及LinkedHashMap等。其中这四者的区别如下(简单介绍):HashMap:我们最常用的Map,它根据key的HashCode 值来存储数据,根据key可以直接获取它的Va

2021-01-12 17:02:11 180

原创 Java-并查集实现

private static class UnionFind{ private int[] parent; private int[] rank; private int count; public UnionFind(int n){ this.count = n; parent = new int[n]; for(int i = 0; i < n; i++){.

2021-01-11 19:04:08 140 1

原创 论文笔记011-《COTSAE CO-Training of Structure and Attribute Embeddings for Entity Alignment》

1. 简介题目:《COTSAE CO-Training of Structure and Attribute Embeddings for Entity Alignment》来源:AAAI-2020链接:论文链接代码:Code和Dataset关键字:Structure and Attribute Embeddings、Entity Alignment2. Abstract  实体对齐是知识图构建和融合中的一项基本而重要的任务。以往的工作主要是通过学习关系三元组上的实体嵌入(entity .

2020-12-11 15:24:31 735 2

原创 论文笔记010-《Multi-Channel Graph Neural Network for Entity Alignment》

1. 简介题目:《Multi-Channel Graph Neural Network for Entity Alignment》来源:ACL-2019链接:论文链接代码:Code和Dataset关键字:Graph Neural Network、Embedding-based、Entity Alignment2. Abstract  近年来实体对齐的工作往往受制于KGs之间的异构性以及种子实体对的约束。本文提出了一种多通道的图神经网络MUGNN来学习, 每一个通道通过不同的权重模式来编.

2020-12-09 10:03:28 1352 8

原创 论文笔记009-《A Vectorized Relational Graph Convolutional Network for Multi-Relational Network Alignment》

1. 简介《A Vectorized Relational Graph Convolutional Network for Multi-Relational Network Alignment》来源:IJCAI-2019链接:论文链接代码:[暂无]关键字:Graph Convolutional Network、Embedding-based、Entity Alignment2. Abstract  目前多关系网络(例如知识图谱)对齐工作对上层的AI应用有很重要的意义。现有的基于图卷积网络.

2020-12-05 16:32:36 936

原创 论文笔记008-《A Benchmarking Study of Embedding-based Entity Alignment for Knowledge Graphs》

1. 简介题目:《A Benchmarking Study of Embedding-based Entity Alignment for Knowledge Graphs》来源:VLDB-2020链接:论文链接代码:Code和Dataset关键字:Benchmarking Study、Embedding-based、Entity Alignment2. Abstract  这篇文章主要对实体对齐该领域进行了一次综合性的分析研究,调研了23种Embedding-based的实体对齐方法,.

2020-11-08 23:38:43 1909 3

转载 Kaggle-小技巧

Tutorial on reading large datasetshttps://www.kaggle.com/rohanrao/tutorial-on-reading-large-datasets这篇Kaggle分享是关于读取大量数据的各种方式:Pandas、Dask、Datatable、Rapids;以及读取的各种数据格式对速度的影响:csv、feather、hdf5、jay、parquet、pickle。...

2020-10-22 23:42:42 166

原创 论文笔记007-《Neighborhood Matching Network for Entity Alignment》

1. 简介题目:《Neighborhood Matching Network for Entity Alignment》来源:ACL-2020链接:论文链接代码:Code和Dataset关键字:Entity AlignmentS2. 研究背景  从原先的大量依赖人工的参与实体对齐任务,到Embedding-Based的实体对齐方法的出现,大大缩减了人为的参与度,但是依旧需要一定量的训练种子对,然后提出了基于GCN的相关方法,这些方法有一个假设前提-相似实体对的周围邻近结构也会很相似。但是实

2020-10-21 23:16:52 1408 3

原创 论文笔记006-《Bootstrapping Entity Alignment with Knowledge Graph Embedding》

更多博客可以关注MyBlog,欢迎大家一起学习交流!1. 简介题目:《Bootstrapping Entity Alignment with Knowledge Graph Embedding》来源:IJCAI-2018链接:论文链接代码:Code和Dataset关键字:Entity Alignment、Bootstrapping、Embedding2. 研究背景  近些年(基于2018年的),一些基于Embedding的实体对齐方法被提出,虽然取得了不错的效果,但是仍存在一些问题:.

2020-10-17 23:54:25 537

原创 论文笔记005-《Multi-view Knowledge Graph Embedding for Entity Alignment》

更多博客可以关注MyBlog,欢迎大家一起学习交流!1. 简介题目:《Multi-view Knowledge Graph Embedding for Entity Alignment》来源:IJCAI-2019链接:论文链接代码:Code和Dataset关键字:Entity Alignment、Embedding、Multi-view2. 摘要  原先的实体对齐工作主要关注在实体的关系结构特征,这就导致一些其他类型的特征被忽视,例如其属性(Attributes)特征,由于没有对这类.

2020-10-10 14:49:21 883

转载 argparse简要用法总结

转载:argparse简要用法总结官方文档:https://docs.python.org/3/library/argparse.html

2020-09-14 15:01:06 121

原创 论文笔记004-《Knowledge Graph Alignment Network with Gated Multi-hop Neighborhood Aggregation》

1. 简介题目:《Knowledge Graph Alignment Network with Gated Multi-hop Neighborhood Aggregation》来源:AAAI-2020链接:论文链接代码:Code和Dataset2. 研究背景  由于GNN网络在识别同构子图上表现非常不错,因此应用于很多基于嵌入式的实体对齐方法。但是实际上不同KGs之间对应的实体对,其周围的邻域图结构一般不是相似的,这导致GNN不能准确进行识别。如图1:  上图中指向Kobe Brya.

2020-08-14 15:15:46 894 2

原创 论文笔记003-《Entity Alignment between Knowledge Graphs Using Attribute Embeddings》

《Entity Alignment between Knowledge Graphs Using Attribute Embeddings》1. 简介题目:《Entity Alignment between Knowledge Graphs Using Attribute Embeddings》来源:AAAI-2019链接:https://people.eng.unimelb.edu.au/jianzhongq/papers/AAAI2019_EntityAlignment.pdf代码:Cod

2020-07-29 16:27:26 2184

原创 翻译-Neural Snowball for Few-Shot Relation Learning

Neural Snowball for Few-Shot Relation LearningAbstract知识图谱正处于新的关系不断增长的状况,基于大量充足信息预先定义好关系的关系抽取方法不能很好的处理这种状况。在利用少量的样本来处理新的关系的目标下,我们提出了一种新颖的自展方法-Neural Snowball,通过转换现有关系的语义知识来学习新的关系。更详细地说,我们使用了关系连体网络(RSN)来学习基于已有关系及其标记数据的实例之间的关系相似性度量,然后,在给定一个新关系及其少量实例的基础上,利用

2020-07-21 15:31:35 955

转载 第10章 K-Means(K-均值)聚类算法

聚类聚类,简单来说,就是将一个庞杂数据集中具有相似特征的数据自动归类到一起,称为一个簇,簇内的对象越相似,聚类的效果越好。它是一种无监督的学习(Unsupervised Learning)方法,不需要预先标注好的训练集。聚类与分类最大的区别就是分类的目标事先已知,例如猫狗识别,你在分类之前已经预先知道要将它分为猫、狗两个种类;而在你聚类之前,你对你的目标是未知的,同样以动物为例,对于一个动物集来说,你并不清楚这个数据集内部有多少种类的动物,你能做的只是利用聚类方法将它自动按照特征分为多类,然后人为给出这个

2020-06-02 21:29:07 1470

转载 第9章 树回归

树回归 概述我们本章介绍 CART(Classification And Regression Trees, 分类回归树) 的树构建算法。该算法既可以用于分类还可以用于回归。树回归 场景我们在第 8 章中介绍了线性回归的一些强大的方法,但这些方法创建的模型需要拟合所有的样本点(局部加权线性回归除外)。当数据拥有众多特征并且特征之间关系十分复杂时,构建全局模型的想法就显得太难了,也略显笨拙。而且,实际生活中很多问题都是非线性的,不可能使用全局线性模型来拟合任何数据。一种可行的方法是将数据集切分成很多份

2020-06-02 21:27:44 421

转载 第8章 预测数值型数据:回归

回归(Regression) 概述我们前边提到的分类的目标变量是标称型数据,而回归则是对连续型的数据做出处理,回归的目的是预测数值型数据的目标值。回归 场景回归的目的是预测数值型的目标值。最直接的办法是依据输入写出一个目标值的计算公式。假如你想要预测兰博基尼跑车的功率大小,可能会这样计算:HorsePower = 0.0015 * annualSalary - 0.99 * hoursListeningToPublicRadio这就是所谓的 回归方程(regression equation),其

2020-06-02 21:26:29 1810

转载 第七章 集成方法-随机森林和AdaBoost

集成方法: ensemble method(元算法: meta algorithm) 概述概念:是对其他算法进行组合的一种形式。通俗来说: 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见。机器学习处理问题时又何尝不是如此? 这就是集成方法背后的思想。集成方法:投票选举(bagging: 自举汇聚法 bootstrap aggregating): 是基于数据随机重抽样分类器构造的方法再学习(boosting): 是基于所有分类器的加权求和的方法集成方法 场景

2020-06-02 21:24:44 723

转载 第4章 朴素贝叶斯

朴素贝叶斯 概述贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本章首先介绍贝叶斯分类算法的基础——贝叶斯定理。最后,我们通过实例来讨论贝叶斯分类的中最简单的一种: 朴素贝叶斯分类。贝叶斯理论 & 条件概率贝叶斯理论我们现在有一个数据集,它由两类数据组成,数据分布如下图所示:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-X6Vn6Rmq-1591018468610)(http://data.apachecn.org/img/

2020-06-01 21:36:05 313

转载 第5章 Logistic回归

Logistic 回归 概述Logistic 回归 或者叫逻辑回归 虽然名字有回归,但是它是用来做分类的。其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式,以此进行分类。须知概念Sigmoid 函数回归 概念假设现在有一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合的过程就叫做回归。进而可以得到对这些点的拟合直线方程,那么我们根据这个回归方程,怎么进行分类呢?请看下面。二值型输出分类函数我们想要的函数应该是: 能接受所有

2020-06-01 21:32:37 738

转载 第4章 朴素贝叶斯

朴素贝叶斯 概述贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本章首先介绍贝叶斯分类算法的基础——贝叶斯定理。最后,我们通过实例来讨论贝叶斯分类的中最简单的一种: 朴素贝叶斯分类。贝叶斯理论 & 条件概率贝叶斯理论我们现在有一个数据集,它由两类数据组成,数据分布如下图所示:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-R4OXJfTi-1591018130797)(http://data.apachecn.org/img/

2020-06-01 21:30:19 196

转载 第3章 决策树

决策树 概述决策树(Decision Tree)算法是一种基本的分类与回归方法,是最经常使用的数据挖掘算法之一。我们这章节只讨论用于分类的决策树。决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是 if-then 规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。决策树学习通常包括 3 个步骤:特征选择、决策树的生成和决策树的修剪。决策树 场景一个叫做 “二十个问题” 的游戏,游戏的规则很简单:参与游戏的一方在脑海中想某个事物,其他参与者向他提问,只

2020-06-01 21:27:25 515

转载 第2章 k-近邻算法

KNN 概述k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法。一句话总结:近朱者赤近墨者黑!k 近邻算法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类。k 近邻算法假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其 k 个最近邻的训练实例的类别,通过多数表决等方式进行预测。因此,k近邻算法不具有显式的学习过程。k 近邻算法实际上利用训练数据集对特征向量空间进行划分,并作为其分类

2020-05-31 19:29:11 1077

转载 第1章 机器学习基础

第1章 机器学习基础机器学习 概述机器学习(Machine Learning,ML) 是使用计算机来彰显数据背后的真实含义,它为了把无序的数据转换成有用的信息。是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。海量的数据获取有用的信息机器

2020-05-31 19:18:47 1991

原创 Pandas学习笔记---001

Pandas学习笔记—001更多博客: MyBlog.1. 数据类型Series:带标签的一维数组DataFrame:带标签的,大小可变的,二维异构表格import numpy as npimport pandas as pd# 生成Seriess = pd.Series([1, 3, 5, np.nan, 6, 8])print(s)0 1.01 3.02 5.03 NaN4 6.05 8.0dtype: float642. 使

2020-05-28 21:54:52 263

原创 c++字符串的大小写转换

目录StringString字符串的大小写转换:#include <iostream>#include <algorithm> //transform函数//#include<bits/stdc++.h>#include<string> using namespace std;int main(){ string s...

2020-01-11 00:00:03 348

原创 [C语言]LeetCode-102/103.二叉树的锯齿形层次遍历

要求:给定一个二叉树,返回其节点值的锯齿形层次遍历。(即先从左往右,再从右往左进行下一层遍历,以此类推,层与层之间交替进行)。(这个题目就是在LeetCode-102基础上添加了要求,基本思路大致相同)示例给定二叉树 [3,9,20,null,null,15,7] 3 / \ 9 20 / \ 15 7返回锯齿形层次遍历如下::[ [3...

2019-10-13 19:02:49 564

原创 LeetCode-23.合并 k 个排序链表 [C语言]

合并k个排序链表,返回合并后的排序链表。示例:输入:[ 1->4->5, 1->3->4, 2->6]输出: 1->1->2->3->4->4->5->61.最简单的思路,每次从k个链表中选择最小,加入目标链表中。简单分析一下,每次的比较选择,需要k-1次,则是O(k)的时间复杂度,假设一共...

2019-08-19 23:27:54 437

Windows屏保壁纸下载

Windows屏保壁纸下载与保存指南 一、背景介绍 Windows系统自带的屏保功能不仅可以保护我们的显示器,还能为我们带来视觉上的享受。然而,Windows的屏保壁纸往往会自动更新,有时我们可能会错过一些特别喜欢的壁纸。为了解决这个问题,我们特别推出了一款名为“壁纸保存助手”的小工具,帮助您轻松下载和保存这些精美的壁纸。 二、功能特点 自动检测屏保壁纸:程序会定期扫描Windows屏保文件夹,检测新添加的壁纸。 壁纸预览与选择:提供壁纸预览功能,您可以选择喜欢的壁纸进行保存。 自定义保存路径:支持自定义壁纸保存路径,方便您统一管理壁纸。 轻量级与易用性:程序体积小,界面简洁,操作简单易懂。 三、使用步骤 安装程序 下载“壁纸保存助手”的安装包(mysetup.exe)。 双击运行安装包,按照指引完成安装。 运行程序 可以在桌面或开始菜单找到“壁纸保存助手”的快捷方式,双击运行。 或者直接找到安装目录下的“getpicv2.exe”程序,双击运行。 选择保存路径 程序会提示您选择壁纸保存的文件夹,请选择一个方便管理的路径。 如果您已经选择过保存路径,程序将直接跳过此步骤

2024-05-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除