要求:
部署两个python的接口,一个是使用量表数据类型来预测是否患病,另一个是使用一个视频来预测是否患病。
这也是我第一次接触到python接口,经过今天一天的学习,已经成功用Flask框架实现了python前后端的交互。
先提前导入必要的软件包:
## 共用的
from flask import Flask
from flask import render_template
from flask import request
import pickle
import numpy as np
import pandas as pd
## video用的
from keras.models import load_model ## 加载video模型
from data_process as dt ## 这个是自己写的python文件,功能是对视频文件进行处理
项目在pycharm中调试,导入flask之后还需要自己创建templates文件夹,用来存放html文件。
两个项目中与API相关的文件都是只有两个:index.html和api.py,机器学习模型已经提前训练好,存放在model文件夹中,运行时run api.py文件即可。
一、量表的API
由于之前已经训练好了模型,此次为了便于从前端接收数据,只保留了Q-Chat10的10个二值问题。先定义一个Flask实例,之后是主页面的路由,用来展示问题以及获取数据:
被遮住的是“index.html”,该文件定义了初始页面的结构,具体代码如下:
里面value指默认值,max设置为1,min设置为0,意思是只能选0和1两种答案,action参数是指向,就是获取数据之后转向的页面。method设置为POST,这里原理我不是很懂,但是功能是获取数据。
设置端口为8000,运行api.py代码,控制台会出现一个IP地址,该IP地址是本机地址,然后点击这个地址就可以在浏览器打开初始页面。
点击submit之后输入的信息传入第二个路由的request.form中,使用request.form.to_dict()将数据转化为字典格式,然后使用.get(‘key’)就可以获取到字典的值。
由于之前训练的模型要求输入的数据类型为pandas.core.frame.DataFrame,数据格式为(1,10),因此还需要进行一些调整,具体思路是:创建一个空数组->把input的值逐个传入数组->数组升维->数组转变为pandas.core.frame.DataFrame格式->传入模型进行预测,最后返回结论。具体代码如下:
result页面出现结果:
二、视频的API
基本过程和量表的一样,只不过获取的数据类型和处理方式发生了一些改变:
引用其他人的一段说明:
enctype就是encodetype就是编码类型的意思。multipart/form-data是指表单数据有多部分构成,既有文本数据,又有文件等二进制数据的意思。默认情况下,enctype的值是application/x-www-form-urlencoded,不能用于文件上传,只有使用了multipart/form-data,才能完整的传递文件数据。application/x-www-form-urlencoded不是不能上传文件,是只能上传文本格式的文件,multipart/form-data是将文件以二进制的形式上传,这样可以实现多种类型的文件上传。
原文链接:https://blog.csdn.net/lingxiyizhi_ljx/article/details/102514560
对上传的视频采取的处理方法是保存到本地,然后调用之前写的函数对视频进行各种处理,最后调用模型进行预测,具体代码如下:
明天就开始把接口部署到服务器,希望能顺利!