python后端API的本地实现

本文介绍了作者首次使用Python和Flask框架构建前后端接口的经历,包括如何部署针对量表数据和视频的疾病预测API,涉及数据预处理、模型调用及部署到服务器的计划。
摘要由CSDN通过智能技术生成

要求:

部署两个python的接口,一个是使用量表数据类型来预测是否患病,另一个是使用一个视频来预测是否患病。

这也是我第一次接触到python接口,经过今天一天的学习,已经成功用Flask框架实现了python前后端的交互。

先提前导入必要的软件包:

## 共用的
from flask import Flask
from flask import render_template
from flask import request
import pickle
import numpy as np
import pandas as pd

## video用的
from keras.models import load_model ## 加载video模型
from data_process as dt ## 这个是自己写的python文件,功能是对视频文件进行处理

项目在pycharm中调试,导入flask之后还需要自己创建templates文件夹,用来存放html文件。

两个项目中与API相关的文件都是只有两个:index.html和api.py,机器学习模型已经提前训练好,存放在model文件夹中,运行时run api.py文件即可。

一、量表的API

由于之前已经训练好了模型,此次为了便于从前端接收数据,只保留了Q-Chat10的10个二值问题。先定义一个Flask实例,之后是主页面的路由,用来展示问题以及获取数据:

被遮住的是“index.html”,该文件定义了初始页面的结构,具体代码如下:

里面value指默认值,max设置为1,min设置为0,意思是只能选0和1两种答案,action参数是指向,就是获取数据之后转向的页面。method设置为POST,这里原理我不是很懂,但是功能是获取数据。

设置端口为8000,运行api.py代码,控制台会出现一个IP地址,该IP地址是本机地址,然后点击这个地址就可以在浏览器打开初始页面。

点击submit之后输入的信息传入第二个路由的request.form中,使用request.form.to_dict()将数据转化为字典格式,然后使用.get(‘key’)就可以获取到字典的值。

由于之前训练的模型要求输入的数据类型为pandas.core.frame.DataFrame,数据格式为(1,10),因此还需要进行一些调整,具体思路是:创建一个空数组->把input的值逐个传入数组->数组升维->数组转变为pandas.core.frame.DataFrame格式->传入模型进行预测,最后返回结论。具体代码如下:

result页面出现结果:

二、视频的API

基本过程和量表的一样,只不过获取的数据类型和处理方式发生了一些改变:

引用其他人的一段说明:

enctype就是encodetype就是编码类型的意思。multipart/form-data是指表单数据有多部分构成,既有文本数据,又有文件等二进制数据的意思。默认情况下,enctype的值是application/x-www-form-urlencoded,不能用于文件上传,只有使用了multipart/form-data,才能完整的传递文件数据。application/x-www-form-urlencoded不是不能上传文件,是只能上传文本格式的文件,multipart/form-data是将文件以二进制的形式上传,这样可以实现多种类型的文件上传。
原文链接:https://blog.csdn.net/lingxiyizhi_ljx/article/details/102514560

对上传的视频采取的处理方法是保存到本地,然后调用之前写的函数对视频进行各种处理,最后调用模型进行预测,具体代码如下:

明天就开始把接口部署到服务器,希望能顺利!

好的,针对您的问题,我将分别给出前端Vue和后端Python(使用FastAPI框架)的示例代码。 前端Vue代码: ```html <template> <div> <input type="file" ref="file" @change="handleFileChange" /> <button @click="upload">上传</button> </div> </template> <script> import axios from 'axios'; export default { data() { return { file: null, arr: [1, 2, 3, 4, 5], }; }, methods: { handleFileChange(e) { this.file = e.target.files[0]; }, async upload() { const formData = new FormData(); formData.append('file', this.file); formData.append('arr', JSON.stringify(this.arr)); try { const res = await axios.post('/api/upload', formData); console.log(res.data); } catch (e) { console.error(e); } }, }, }; </script> ``` 上面的代码中,我们使用了`<input type="file">`元素来选择文件,然后通过`FormData`来构建请求体,最后使用`axios`库发送POST请求到后端后端Python代码: ```python from fastapi import FastAPI, File, UploadFile, Form import os app = FastAPI() @app.post("/api/upload") async def upload(file: UploadFile = File(...), arr: str = Form(...)): arr = json.loads(arr) filename = file.filename with open(os.path.join('/path/to/save/', filename), 'wb') as f: contents = await file.read() f.write(contents) return {'msg': 'success'} if __name__ == '__main__': import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000) ``` 上面的代码中,我们使用了FastAPI框架来创建 Web 应用,接收前端发送的POST请求,从中获取文件和数组,然后将文件保存到本地指定路径。请注意,`/path/to/save/`需要替换为您本地存储文件的路径。同时,我们使用了异步读取文件内容的方式,以提高性能。 需要注意的是,FastAPI对于文件的上传使用了`UploadFile`类,而不是直接使用`File`。此外,我们也使用了`uvicorn`库来启动应用,以提高性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值