C/C++ 浮点数比较是否相等时,有些细节必须要意识到,例如下面的代码:
#include <iostream>
using namespace std;
void main()
{
double epsilon=0.001;
double d1=2.334;
double d2=2.335;
cout << "epsilon is: " << epsilon << endl;
cout << "d2-d1 is: " << d2-d1 << endl;
if ((d2 - d1) == epsilon){
cout << "Equal!" << endl;
}
else{
cout << "Not equal!" << endl;
}
}
其输出结果实际上是:
epsilon is: 0.001
d2-d1 is: 0.001
Not equal!
为何会这样呢?让我们稍微调整一下上面的代码:
cout<<"epsilon is: "<< setprecision(20) << epsilon<<endl;
cout<<"d2-d1 is: "<< setprecision(20) << d2-d1 <<endl;
可以得到:
epsilon is: 0.00100000000000000000
d2-d1 is: 0.00099999999999988987
这里引出一条C/C++中非常重要的原则:
The important rule to remember is that powers of two and integer multiples thereof can be perfectly represented. everything else is an approximation.
直译过来意识就是,除了可以表示为2的幂次以及整数数乘的浮点数可以准确表示外,其余的数的值都是近似值。
例如,1.5
可以精确表示,因为1.5 = 3*2^(-1)
;然而3.6
却不能精确表示,因为它并不满足这一规则。
所以在比较的时候需要用一个很小的数值来进行比较。(二分法的思想)当二者之差小于这个很小的数时,就认为二者是相等的了,而不能直接用== 或!=比较。这个很小的数,称为精度。
精度由计算过程中需求而定。比如一个常用的精度为1e-6.也就是0.000001.
所以对于两个浮点数a,b,如果要比较大小,那么常常会设置一个精度
如果fabs(a-b)<=1e-6,那么就是相等了。 fabs是求浮点数绝对值的函数。
类似的 判断大于的时候,就是if(a>b && fabs(a-b)>1e-6)。
判断小于的时候,就是if(a<b&&fabs(a-b)>1e-6)。
例如:
-
-
-
const double esp = 1e-6;
-
int main()
-
{
-
double a,b;
-
scanf( "%lf %lf",&a,&b);
-
if( fabs(a - b) <= esp)
-
printf( "ok\n");
-
else
-
printf( "no\n");
-
return 0;
-
}
发现只有当浮点数作差时需要用到eps精度
PS:
单精度数7位有效数字。 (float)
双精度数16位有效数字。(double)
单精度数的尾数用23位存储,加上默认的小数点前的1位1,2^(23+1) = 16777216。因为 10^7 < 16777216 < 10^8,所以说单精度浮点数的有效位数是7位。 双精度的尾数用52位存储,2^(52+1) = 9007199254740992,10^16 < 9007199254740992 < 10^17,所以双精度的有效位数是16位
单精度浮点数的实际有效精度为24位二进制,这相当于 24*log102≈7.2 位10进制的精度,所以平时我们说“单精度浮点数具有7位精度”。(精度的理解:当从1.000...02变化为1.000...12时,变动范围为 2-23,考虑到因为四舍五入而得到的1倍精度提高,所以单精度浮点数可以反映2-24的数值变化,即24位二进制精度)
单精度数7位有效数字。
双精度数16位有效数字。
浮点数取值范围:
负数取值范围为 -3.4028235E+38 到 -1.401298E-45,正数取值范围为 1.401298E-45 到 3.4028235E+38。
双精度数取值范围:
负值取值范围-1.79769313486231570E+308 到 -4.94065645841246544E-324,正值取值范围为 4.94065645841246544E-324 到 1.79769313486231570E+308。