下沙小面的(1)
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1429 Accepted Submission(s): 593
Problem Description
Lele 在下沙高校中有很多同学,所以他有时间也经常到处去看望同学(顺便蹭饭)。
在下沙,最便宜方便的交通工具莫过于小面的了。
坐得多了,Lele有时候也想,如果将来失业了,能够在下沙开开小面的,也是多么幸福的啊。
终于有一天,他如愿当上了小面的的司机。为了更好的服务客户,他订立了一些开车的法则。
1.当有人要求上车时,如果不是下面这两种情况,他就会让人上车。
2.有些人会因为迷路,往往不知道自己在哪里。比如身在城市1,他也会要求Lele把他送到城市1。这时,Lele当然具有商人诚信的原则,告诉他这个情况,并且不会让他上车。
3.由于小面的的座位只有7个(不包括司机Lele的驾驶座),如果当时车上已经有7个人,Lele就不会让人再上车了。
4.在没人上车时,Lele会看车内谁最早上车,然后把他送到目的地,当然,车内其他要去这个地方的人也会一起下车。然后车停在那个位置
5.如果车内已经没乘客了,Lele就会在原地等着,直到下一个顾客上门。否则Lele在那个地方重复前面的法则。
现在,告诉你Lele一天面对到的情况,请帮他计算一下,他一天一共开了多少距离。
Input
本题目包含多组测试。最后一组测试后有一个0代表结束。
每组测试第一行有一个整数NCity(3<=NCity<=30)表示下沙一共有多少个站点(站点从0开始标号)。
然后给你一个 NCity * NCity 的矩阵,表示站点间的两两距离。即这个矩阵中第 i 行 第 j 列的元素表示站点 i 和站点 j 的距离。(0<=距离<=1000)
再然后有一个正整数 K , 表示接下来有K个指令。每个指令占一行。
当指令开头为 UP 的时候,接下来有一个整数 T ,表示在面的所在位置有一个要去站点T(0<=T<NCity)的人要上车。
当指令为 GO 的时候,表示Lele要执行法则4,送某些乘客下车。
当然,如果车上当时没有乘客的话,你就可以忽略这个指令。
注意:
在每组测试开始的时候,Lele的面的总是停在站点0,且车为空
如果在T个指令都结束之后,还发现有人没下车,则你可以忽略他们。
Output
最后在一行内输出一个整数,表示Lele的面的一共开了多少距离。
Sample Input
3 0 1 2 1 0 3 2 3 0 9 UP 1 UP 2 GO UP 2 GO GO UP 2 UP 1 GO 0
Sample Output
7
对题意进行直接的模拟即可。做法是利用MAP将要去的站点与人数作为键值对储存,同时维护一个队列存放要去往站点的顺序。
也可以使用链表进行存储。
import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.Map;
import java.util.Queue;
import java.util.Scanner;
import java.util.Set;
public class Main {
public static void main(String[] s) {
Scanner sc=new Scanner(System.in);
while(sc.hasNext()) {
int n=sc.nextInt();
int res=0;
if(n==0)
break;
Queue<Integer> queue = new LinkedList<Integer>();
int map[][]=new int[n][n];
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++) {
int tmp=sc.nextInt();
map[i][j]=tmp;
}
}
Map<Integer, Integer> mymap =new HashMap<>();
int t=sc.nextInt();
int now=0;int people=0;
for(int i=0;i<t;i++) {
String s1=sc.next();
if(s1.equals("UP")) {
int pos=sc.nextInt();
int flag=0;
if(pos!=now&&people<7) {
people++;
Set myset=mymap.keySet(); //通过SET来对MAP进行一次遍历
Iterator it=myset.iterator();
while(it.hasNext()) {
int key=(int) it.next();
int vaule=mymap.get(key);
if(key==pos) {
mymap.put(key, vaule+1); //如果这个人也要去这里,则人数加1
flag=1;
break;
}
}
if(flag==0) {
mymap.put(pos,1); //如果没有该站点,则向MAP中加入这一对,然后该站点入队列
queue.offer(pos);
}
}
}
else if(s1.equals("GO")) {
if(people>0) {
int goal=queue.poll();
res+=map[now][goal];
now=goal; //更新当前位置
people-=mymap.get(goal);
mymap.remove(goal); //该位置出队列
}
}
}
System.out.println(res);
}
}
}
下沙小面的(2)
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2590 Accepted Submission(s): 1137
Problem Description
前文再续,书接上一题。话说当上小面的司机的Lele在施行他的那一套拉客法则以后,由于走的路线太长,油费又贵,不久便亏本了。(真可怜~)于是他又想了一个拉客的办法。
对于每一次拉客活动,他一次性把乘客都拉上车(当然也不会超过7个,因为位置只有7个)。然后,Lele计算出一条路线(出于某些目的,Lele只把车上乘客的目的地作为这条路线上的站点),把所有乘客都送到目的地(在这路线上不拉上其他乘客),并且使总路线长度最短。
不过Lele每次都要花很多时间来想路线,你能写个程序帮他嘛?
Input
本题目包含多组测试。最后一组测试后有一个0代表结束。
每组测试第一行有一个整数NCity(3<=NCity<=30)表示下沙一共有多少个站点(站点从0开始标号)。
然后给你一个 NCity * NCity 的矩阵,表示站点间的两两距离。即这个矩阵中第 i 行 第 j 列的元素表示站点 i 和站点 j 的距离。(0<=距离<=1000)
再然后有一个整数K(1<=K<=7),表示Lele拉上车的人数。
接下来的一行里包括 K 个整数,代表上车的人分别要去的站点。(0<站点<NCity)
注意:
对于每组测试,Lele都是在站点0拉上乘客的。
Output
对于每一组测试,在一行内输出一个整数,表示最短路线的长度。
Sample Input
3 0 1 2 1 0 3 2 3 0 3 1 1 2 0
Sample Output
4
由题意知计算从0开始走怎样路程最小,有k个乘客最多去往去往7个站点,可以直接使用深搜。
import java.util.Arrays;
import java.util.Scanner;
public class Maintest {
public static int sum=0;
public static int minn=1000000;
public static int box[]=new int[50]; //存放要去的站点
public static int vis[]=new int[50]; //标记数组
public static int map[][]=new int[50][50];
//res是当前走的路程,num是走过了几个站点,pos是当前站点位置
public static void dfs(int res,int num,int pos) {
if(num==sum) { //一共有sum个站点,全部去过则完成,跳出递归。
if(res<minn)
minn=res;
return;
}
for(int i=0;i<sum;i++) {
if(vis[i]==0) {
vis[i]=1; //标记
dfs(res+map[pos][box[i]],num+1,box[i]);
vis[i]=0; //回溯
}
}
}
public static void main(String[] s) {
Scanner sc=new Scanner(System.in);
while(sc.hasNext()) {
int n=sc.nextInt();
if(n==0)
break;
minn=1000000;
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++) {
int tmp=sc.nextInt();
map[i][j]=tmp;
}
}
int people=sc.nextInt();
Arrays.fill(box, 0);Arrays.fill(vis, 0);sum=0;
for(int i=0;i<people;i++) {
int tmp=sc.nextInt();int flag=0;
for(int j=0;j<sum;j++) {
if(box[j]==tmp) {
flag=1;break;}
}
if(flag==0) {
box[sum++]=tmp;
}
}
dfs(0,0,0);
System.out.println(minn);
}
}
}