KMP算法是解决字符串匹配问题的经典算法,相比较于二重循环暴力破解法,KMP匹配算法的效率大大提高。
暴力破解法的第一重循环是主串的i指针遍历主串的所有位置作为基点的情况,第二重循环是模式串的j指针与i指针依次比较各自指向的元素是否相等,如果不相等则i指针回溯到新的基点开始与j重新比较。直到主串剩余元素个数小于模式串长度还没有找的,则说明无法完成匹配。
明显暴力法会做出许多浪费的操作,KMP算法就是令主串的i指针不再进行回溯操作而是改为j指针自动去指向合适的位置,为了能使j完成这一操作,我们需要开辟一个next前缀数组来
关于KMP算法的详解强烈推荐这一篇博客:https://www.cnblogs.com/yjiyjige/p/3263858.html
P3375 【模板】KMP字符串匹配
题目描述
如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置。
输入输出格式
输入格式:
第一行为一个字符串,即为s1
第二行为一个字符串,即为s2
输出格式:
若干行,每行包含一个整数,表示s2在s1中出现的位置
接下来1行,包括length(s2)个整数,表示前缀数组next[i]的值。
输入输出样例
输入样例#1:
ABABABC ABA
输出样例#1:
1 3 0 0 1
说明
时空限制:1000ms,128M
数据规模:
设s1长度为N,s2长度为M
对于30%的数据:N<=15,M<=5
对于70%的数据:N<=10000,M<=100
对于100%的数据:N<=1000000,M<=1000000
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<string>
#include<cstring>
#include<cmath>
using namespace std;
char a1[2000000],a2[2000000];
int kmp[2000000];
int main()
{
scanf("%s%s",a1,a2);
kmp[0]=kmp[1]=0; //前一位,两位失配了,都只可能将第一位作为新的开头
int len1=strlen(a1),len2=strlen(a2);
int k;
k=0;
for(int i=1;i<len2;i++) //自己匹配自己
{
while(k&&a2[i]!=a2[k])k=kmp[k]; //找到最长的前后缀重叠长度
kmp[i+1]=a2[i]==a2[k]?++k:0; //不相等的情况,即无前缀能与后缀重叠,直接给下一位赋值为0
}
k=0;
for(int i=0;i<len1;i++)
{
while(k&&a1[i]!=a2[k])k=kmp[k]; //如果不匹配,则将利用kmp数组往回跳
k+=a1[i]==a2[k]?1:0; //如果相等了,则匹配下一位
if(k==len2)printf("%d\n",i-len2+2);//如果已经全部匹配完毕,则输出初始位置
}
for(int i=1;i<=len2;i++)printf("%d ",kmp[i]);
return 0;
}