图像相似性匹配

本文介绍了图像相似性匹配的多种方法,包括直方图比较、分布直方图、互相关信息、图像hash、小波变换、傅里叶变换、FREAK特征以及特征点检测与描述子匹配。针对不同场景和需求,这些方法各有优势,能应对尺度、颜色变化等问题,提升匹配的鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于图像的相似性匹配常用的方法包括以下几种:

1. 获取(区域或全局)直方图(颜色直方图,灰度直方图,LBP,HOG等)直接利用各种相似性距离度量,或者计算其各阶矩,或者对其曲线进行二值化,然后进行比较。

其中各种相似性距离度量在另外一篇博客中做了介绍,各种矩常用的包括一阶矩(即均值),二阶矩(即方差),无穷阶矩(最大值);曲线的二值化是

g(i) = hist(i)>hist(i+1)?1:0(i=0....254),这样可以利用一串bit近似的表示曲线的形状。

2. 相对于直方图是统计的相应信息的数量分布情况,还可以统计每一种颜色值(0-255)的分布情况,构建分布直方图,然后利用其作为相似性的度量

3. 上面提到的可以单独作为一种相似度来度量,也可以两两结合,如灰度直方图和LBP,能提高匹配的鲁棒性。但是对于尺度或颜色变化比较大的匹配还是有一定的限制。

另外的匹配的方法有利用互相关信息,例如将图像分为N*M块,计算每一块的与其它块的差异性,这样就可以构成一个N*(N*M)的对称矩阵,这种方式对于图像自身整体的变化具有良好的鲁棒性。

4. 利用编码的方法直接将图像hash成hash值,除了这种hash方式之外还有其它一些方式,例如将图像分为N*M块,然后计算每一块的中值,然后与全局的中值比较,如果大则为1,这样就可以把图像转化为N*M的二值。

5.利用各种小波变换或傅里叶变换,将图像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值