如果经常与二进制文件结构打交道,则需要一些DSL(领域特定语言)和工具来解析二进制文件,以下是一些常用的选择:
-
Kaitai Struct是一种领域特定语言(DSL)和工具集,用于描述和解析二进制格式的数据结构。它可以帮助您快速创建用于读取、解析和处理各种二进制文件格式的解析器代码。
-
BinData:BinData是Ruby编程语言的DSL,用于解析二进制文件。它提供了一种简洁的方式来定义二进制文件的结构,并解析和访问其中的数据。
-
Construct:Construct是Python编程语言的DSL,用于解析和构建二进制数据。它提供了一种声明性的方式来定义二进制文件的结构,并支持从二进制数据中提取和解析数据。
-
BitStruct:BitStruct是Python编程语言的库,用于解析和处理位级别的二进制数据。它提供了一种简单的方式来定义二进制数据的结构,并允许以位为单位进行访问和操作。
-
Protocol Buffers:Protocol Buffers(简称ProtoBuf)是Google开发的一种语言无关、平台无关的序列化框架。它使用.proto文件定义数据结构,可以生成各种编程语言的代码,以便解析和生成二进制数据。
-
Cap’n Proto:Cap’n Proto是另一种跨语言的二进制序列化框架,类似于Protocol Buffers。它使用自己的DSL来定义数据结构,并提供了高效的序列化和反序列化操作。
Kaitai Struct
Kaitai Struct使用自己的DSL来定义二进制文件的结构。DSL是一种专门针对某个领域的编程语言,用于描述和解析特定领域的结构和数据。
使用Kaitai Struct的DSL,您可以描述二进制文件的结构,包括文件头、记录、字段、位域等。您可以定义数据类型、偏移量、大小、顺序等信息,以完整地描述二进制格式的结构。
一旦您完成了对二进制格式的描述,您可以使用Kaitai Struct工具集中的编译器将DSL文件编译为多种编程语言的解析器代码。目前支持的语言包括C++, C#, Java, Python等。
生成的解析器代码是独立于特定平台的,这意味着您可以在不同的操作系统和环境中使用相同的代码来解析相同的二进制格式。这提供了更大的灵活性和可移植性。
使用生成的解析器代码,您可以轻松地读取和访问二进制文件中的数据。解析器代码负责处理复杂的字节序、位操作和数据结构的细节,使解析过程更简单和高效。
总体而言,Kaitai Struct是一个强大的工具,可帮助您描述和解析各种二进制文件格式。它通过使用自定义DSL和自动生成的解析器代码,简化了解析过程,并提供了跨平台和可移植性。无论是处理自定义的二进制格式还是解析已知的文件格式,Kaitai Struct都是一个有用的工具。
快速上手
在Python中想使用Kaitai Struct来解析一个二进制文件。
首先,确保已经安装了kaitaistruct
模块,可以使用pip
命令进行安装:
pip install kaitaistruct
然后,创建一个名为example.ksy
的Kaitai Struct定义文件,用于描述二进制文件的结构。与之前的示例相同,假设文件包含一个4字节的无符号整数字段(header)和一个8字节的有符号整数字段(data):
meta:
id: example
file-extension: bin
seq:
- id: header
type: u4
- id: data
type: s8
接下来,使用Kaitai Struct Compiler(ksc
)将定义文件编译成Python代码。运行以下命令:
ksc -t python example.ksy
这将生成一个名为example.py
的Python代码文件。
现在,我们可以使用生成的代码来解析二进制文件。假设我们有一个名为example.bin
的二进制文件,包含了符合上述定义的数据。下面是一个使用生成的代码解析文件的示例:
import example
# 打开二进制文件
with open('example.bin', 'rb') as f:
# 创建解析器实例
parser = example.Example.from_file(f)
# 获取解析后的字段值
header_value = parser.header
data_value = parser.data
print(f"Header: {header_value}")
print(f"Data: {data_value}")
我们只需解析一个二进制文件,然后访问其它的字段即可。
这是一个简单的示例,演示了如何在Python中使用Kaitai Struct来解析二进制文件。Kaitai Struct还提供了其他功能,例如支持复杂的数据结构、自定义逻辑和条件语句等。你可以根据实际需求来编写更复杂的Kaitai Struct定义文件和解析代码。
下面是一个稍复杂的Kaitai Struct示例,用于解析一个包含多个字段和嵌套结构的二进制文件。
meta:
id: example
file-extension: bin
seq:
- id: header
type: u4
- id: record_count
type: u4
- id: records
type: record
repeat: expr
repeat-expr: record_count
types:
record:
seq:
- id: timestamp
type: u8
- id: value
type: f8
Python解析程序需要这样写:
import example
# 打开二进制文件
with open('example.bin', 'rb') as f:
# 创建解析器实例
parser = example.Example.from_file(f)
# 获取解析后的字段值
header_value = parser.header
record_count = parser.record_count
records = parser.records
print(f"Header: {header_value}")
print(f"Record Count: {record_count}")
for record in records:
timestamp = record.timestamp
value = record.value
print(f"Timestamp: {timestamp}")
print(f"Value: {value}")
在上述示例中,我们首先导入生成的代码(在上述示例中为example.py
)。然后,我们使用open
函数打开二进制文件,并创建一个解析器实例(example.Example.from_file(f)
),将文件对象传递给解析器。
接下来,我们可以通过访问解析器实例的字段来获取解析后的值。在这个例子中,我们获取了header
和record_count
字段的值,以及records
数组中每个记录的字段值。
最后,我们输出解析后的字段值。
解析Surfer 的GRID文件
meta:
id: surfer_grid
file-extension: grd
seq:
- id: magic
type: magic_enum
enum: magic_value_enum
- id: header
type: header_struct
- id: data
type: data_struct
repeat: expr
repeat-expr: header.num_cells
types:
magic_enum:
seq:
- id: magic_value
type: str
size: 4
instances:
DSBB: { magic_value: "DSBB" }
header_struct:
seq:
- id: num_cells
type: u4
- id: num_points
type: u4
- id: x_min
type: f8
- id: x_max
type: f8
- id: y_min
type: f8
- id: y_max
type: f8
- id: z_min
type: f8
- id: z_max
type: f8
data_struct:
seq:
- id: z_values
type: f4
刚才是Surfer 6的GRID文件的定义,我参考Surfer 7的官方帮助,让ChatGPT生成了一个描述文件,先放在这里,有待以后验证。如果这个结构让我自己研究,可能琢磨一天也写不出来。
meta:
id: surfer7_grid
file-extension: grd
endian: le
seq:
- id: header_tag
type: tag_struct
- id: header
type: header_struct
size: header_tag.size
- id: grid_tag
type: tag_struct
- id: grid
type: grid_struct
size: grid_tag.size
- id: data_tag
type: tag_struct
- id: data
type: data_struct
size: data_tag.size
- id: fault_info_tag
type: tag_struct
- id: fault_info
type: fault_info_struct
size: fault_info_tag.size
types:
tag_struct:
seq:
- id: id
type: u4
- id: size
type: u4
header_struct:
seq:
- id: version
type: i4
grid_struct:
seq:
- id: n_row
type: i4
- id: n_col
type: i4
- id: x_ll
type: f8
- id: y_ll
type: f8
- id: x_size
type: f8
- id: y_size
type: f8
- id: z_min
type: f8
- id: z_max
type: f8
- id: rotation
type: f8
- id: blank_value
type: f8
data_struct:
seq:
- id: values
type: f8
repeat: expr
repeat-expr: (grid.n_row * grid.n_col)
fault_info_struct:
seq:
- id: n_traces
type: i4
- id: n_vertices
type: i4
- id: traces
type: trace_struct
repeat: expr
repeat-expr: fault_info.n_traces
- id: vertices
type: vertex_struct
repeat: expr
repeat-expr: fault_info.n_vertices
trace_struct:
seq:
- id: i_first
type: i4
- id: n_pts
type: i4
vertex_struct:
seq:
- id: x
type: f8
- id: y
type: f8