POJ 1201 Intervals(差分约束基础)

题意:
。。。
思路:
差分约束的知识详见《算法导论》24.4 “差分约束和最短路径”

1)变量:
用s[i]表示[0, i]中数的个数,特别的,s[-1] = 0
设最大的区间端点是maxnum,那么总共有maxnum+2个变量(也就是图上的节点),s[-1],s[0]…s[maxnum]。
2)隐含的约束:
1>=s[i]s[i1]>=0
3)不等式
对于一个约束(a, b, c), 有 s[b]s[a1]>=c
满足最长路的三角不等式,所以可以用最长路求解。
4)判断负环
虽然此题不存在无解的情况,但判负环还是必要的。。。

PS:
其实题目中还有一个隐含约束s[i]>=0, 所以可以把d[i]初始化为0,然后将所有节点一开始全部放入队列。。算导24.4.7中讨论了消去虚拟节点的方法(到所有节点的边权值为0),就是用0取代inf来初始化。

struct Edge{
    int nxt, cost, to;
    Edge ():nxt(0) {}
    Edge(int x, int y, int z):nxt(x), cost(y), to(z){}
};

int h[Maxn+5], d[Maxn+5], used[Maxn+5], cnt[Maxn+5], tot, n, mxx;
Edge E[Maxn*4];

void add_edge(int from, int to, int cost) {
    //debug
    //printf("add_edge: from %d to %d cost %d\n", from, to, cost);
    E[tot] = Edge(h[from], cost, to);
    h[from] = tot++;
}

int go() {
    fill(d, d+mxx+1, -inf);
    memset(used, 0, sizeof(used));
    memset(cnt, 0, sizeof(cnt));
    queue<int> q;
    q.push(0);d[0] = 0;used[0] = 1;
    while (!q.empty()) {
        int fr=q.front();q.pop();
        used[fr] = 0;
        // debug
        //printf("pick %d\n", fr);
        for (int i=h[fr];i;) {
            Edge &e = E[i];
            if (d[fr]+e.cost > d[e.to]) {
                // debug
                //printf("upd %d from %d to %d\n", e.to, d[e.to], d[fr]+e.cost);
                if (!used[e.to]) {
                    // debug
                    //printf("pb %d\n", e.to);
                    q.push(e.to);
                    used[e.to]=1;
                }
                d[e.to] = d[fr]+e.cost;
                if (++cnt[e.to] >= mxx+1) return 0;
            }
            i = e.nxt;
        }
    }
    return 1;
}

int solve() {
    assert(go());
    return d[mxx];
}

int main() {
#ifndef ONLINE_JUDGE
    freopen("input.in", "r", stdin);
#endif
    SPEED_UP
    cin >> n;
    memset(h, 0, sizeof(h));
    mxx = 0, tot = 1;
    int aa, bb, cc;
    rep(i, 1, n) {
        cin >> aa >> bb >> cc;
        add_edge(aa, bb+1, cc);
        mxx = max (mxx, bb+1);
    }

    rep(i, 0, mxx-1) add_edge(i, i+1, 0);
    rep(i, 1, mxx) add_edge(i, i-1, -1);

    cout << solve() << endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值