POJ 3169 Layout(差分约束基础)

题意:
。。。
思路:
1)不等式
题目中有两类不等式,b-a<=c 和 b - a >= c ( id(a)<id(b) )
把后者换成a-b<=-c,然后求从1开始的最短路。如果d[n]=inf, 则说明(1, n)不存在小于等于的约束关系。
2) 判负环
因为1可能到不了负环,所以首先要把全部节点入队,然后跑一遍spfa来判断。

struct Edge{
    int nxt, cost, to;
    Edge ():nxt(0) {}
    Edge(int x, int y, int z):nxt(x), cost(y), to(z){}
};

int h[Maxn+5], d[Maxn+5], used[Maxn+5], cnt[Maxn+5], tot, n;
Edge E[30000];

void add_edge(int from, int to, int cost) {
    //debug
    //printf("add_edge: from %d to %d cost %d\n", from, to, cost);
    E[tot] = Edge(h[from], cost, to);
    h[from] = tot++;
}

int check() {
    fill(d+1, d+n+1, 0);
    memset(used, 0, sizeof(used));
    memset(cnt, 0, sizeof(cnt));
    queue<int> q;
    rep(i, 1, n) {
        q.push(i);d[i]=0;used[i]=1;
    }
    while (!q.empty()) {
        int fr=q.front();q.pop();
        used[fr] = 0;
        // debug
        //printf("pick %d\n", fr);
        for (int i=h[fr];i;) {
            Edge &e = E[i];
            if (d[fr]+e.cost < d[e.to]) {
                // debug
                //printf("upd %d from %d to %d\n", e.to, d[e.to], d[fr]+e.cost);
                if (!used[e.to]) {
                    // debug
                    //printf("pb %d\n", e.to);
                    q.push(e.to);
                    used[e.to]=1;
                }
                d[e.to] = d[fr]+e.cost;
                if (++cnt[e.to] >= n) return 0;
            }
            i = e.nxt;
        }
    }
    return 1;
}

void go(int st) {
    fill(d+1, d+n+1, inf);
    memset(used, 0, sizeof(used));
    queue<int> q;
    q.push(st);d[st] = 0;used[st] = 1;
    while (!q.empty()) {
        int fr=q.front();q.pop();
        used[fr] = 0;
        // debug
        //printf("pick %d\n", fr);
        for (int i=h[fr];i;) {
            Edge &e = E[i];
            if (d[fr]+e.cost < d[e.to]) {
                // debug
                //printf("upd %d from %d to %d\n", e.to, d[e.to], d[fr]+e.cost);
                if (!used[e.to]) {
                    // debug
                    //printf("pb %d\n", e.to);
                    q.push(e.to);
                    used[e.to]=1;
                }
                d[e.to] = d[fr]+e.cost;
            }
            i = e.nxt;
        }
    }
}

int solve() {
    if (!check()) return -1;
    go(1);
    if (d[n] == inf) return -2;
    return abs(d[n]);
}

int main() {
#ifndef ONLINE_JUDGE
    freopen("input.in", "r", stdin);
#endif
    //SPEED_UP
    int ml, md;
    scanf("%d%d%d", &n, &ml, &md);
    int aa, bb, cc;
    tot = 1;
    // "b-a<=c"
    rep(i, 1, ml) {
        scanf("%d%d%d", &aa, &bb, &cc);
        add_edge(aa, bb, cc);
    }

    // "b-a>=c" => "a-b<=-c"
    rep(i, 1, md) {
        scanf("%d%d%d", &aa, &bb, &cc);
        add_edge(bb, aa, -cc);
    }

    // 隐含的顺序关系,不用约束也可以,数据已经保证了
    rep(i, 2, n) add_edge(i, i-1, 0);

    printf("%d\n", solve());

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值