MapReduce Algorithms for Big Data Analysis

随着大量应用需要处理无法装入单一机器内存的大数据,MapReduce框架因其易于开发且能有效处理PB级数据的特点而受到广泛关注。本教程介绍基于Hadoop的MapReduce框架,并探讨其在查询处理、数据挖掘等领域的最新算法进展。
摘要由CSDN通过智能技术生成
1. MapReduce Algorithms for Big Data Analysis; A. Madaan, S. Kikuchi, and S. Bhalla (EDS.): DNIS 2013, LNCS 7813, PP. 44-48, 2013.
2. Abstract. As there is an increasing trend of applications being expected to deal with big data that usually do not fit in the main memory of a single machine, analyzing big data is a challenging problem today. For such data-intensive applications, the MapReduce framework has recently attracted considerable attention and started to be investigated as a cost effective option to implement scalable parallel algorithms for big data analysis which can handle petabytes of data for millions of users. MapReduce is a programming model that allows easy development of scalable parallel applications to process big data on large clusters of commodity machines. Google’s MapReduce or its open-source equivalent Hadoop is a powerful tool for building such applications.
    In this tutorial, we will introduce the MapReduce framework based on Hadoop and present the state-of-the-art in MapReduce algorithms for query processing, data analysis and data mining. The intended audience of this tutorial is professionals who plan to design and develop MapReduce algorithms and researchers who should be aware of the state-of-theart in MapReduce algorithms available today for big data analysis.
3. MapReduce Framework
     -map funciton
     -reduce function
     -word counting and building inverted indexes
     -combine function which can improve the performance significantly
4. Join Processing: 
      -Join algorithms
      -n-way theta joins
      -similarity joins, include Jaccard similarity, Ruzicka similarity, Cosine similarity, Minkowski distance
      -top-k similarity join algorithm using MapReduce
5. Data Mining: 
      -K-means
      -EM clustering algorithm for learning probabilistic model parameters can be parallelized using MapReduce
      -hierarchical clustering, density-based clustering and co-clustering
      -frequent pattern mining and classification with tree model learning
      -parallel graph mining algorithms
      -The covered paralled algorithms include Probabilistic Latent Semantic Index (PLSI) ,TWITOBI, Latent Dirichlet Allocation (LDA) and Hidden Markov model
      -Potpourri: parallel wavelet construction algorithms and nonnegative matrix factorization algorithms
      
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值