自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

林夕

Unlimited learning is great, but unlimited application of that knowledge is potentially dangerous.

  • 博客(84)
  • 资源 (27)
  • 收藏
  • 关注

原创 可解释性机器学习:从入门到实战

机器学习的巨大成功导致AI应用的爆炸式增长。 研究人员已经将AI用于了各种任务。 不断持续的进步有望产生一个自主系统,它能够感知,学习,做出决策和采取独立行动。 但是,这些系统如果无法向人类解释为何作出这样的决策,那么它们的有效性将会受到限制。如果用户要理解,信任和有效管理新兴的人工智能”合作伙伴“,那么可解释的AI将至关重要。

2019-12-18 19:28:23 1895

原创 常用损失函数和评价指标总结

1. 损失函数:2.评价指标:2.1 回归问题:1. MSE: 均方误差(Mean Square Error),范围 [0,+∞)[0,+∞)[0,+∞)MSE=1n∑i=1n(y^i−yi)2M S E=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}MSE=n1​i=1∑n​(y^​i​−yi​)22. RM...

2019-09-24 22:21:56 4849

原创 声音(音乐)分类综述

[1] 手把手教你打造一个曲风分类机器人[2] 怎样用深度学习发现一首歌属于哪个流派?[3] Finding the genre of a song with Deep Learning — A.I. Odyssey part. 1[4] 私人定制——使用深度学习Keras和TensorFlow打造一款音乐推荐系统[5] Building a Music Recommender with ...

2019-02-21 17:19:18 5194

原创 Kaggle-Quora Insincere Questions Classification-Solution

Quora Insincere Questions Classification寒假期间参加了Kaggle的一个比赛-QIQC,作为第一个认真参加的Kaggle比赛,最后这个结果实属幸运,感谢啸宇哥和 W^2e的帮助,现在简单记录下比赛中学到的东西。1. 数据预处理数据预处理是这类任务非常重要的一个环节。由于数据是直接爬取,所以数据是非常脏的,首先就要进行数据预处理。数据预处理的另一个作用就...

2019-02-15 20:05:19 1209

原创 NLP预训练模型-Transformer:从原理到实战

[1]AllenNLP 使用教程[[2]]

2019-01-18 08:47:54 4392 5

翻译 情感分析:几乎包括你需要知道的所有(二)

情感分析是从书面或口头语言中,对特定主题,理解观点的自动过程。在世界上,我们每天生成2.5QB字节的数据,情感分析已成为理解这些数据的关键工具。 这使得公司能够获得关键的见解,并自动化各种流程。但是,它是如何实现的呢?有哪些不同的方法? 它需要注意什么,限制是什么? 你如何在业务中使用情感分析?接下来,您将找到这些问题的答案,以及您需要了解的,关于情感分析的所有内容。 无论你是经验丰富的...

2018-10-28 21:35:24 17438 2

原创 AI Challenger 细粒度用户评论情感分析 (baseline 0.62)

比赛官网:https://challenger.ai/competition/fsauor2018关于情感分析的详细介绍,请参阅我的前一篇文章:https://zhuanlan.zhihu.com/p/44580856先给大家提供一个baseline,线上大概0.62,还可以继续调参。多跑几次,简单融合可以继续提分。代码很简单,使用GPU运行快,修改文件路径既可很快复现。1.运行环境:系...

2018-09-18 21:42:24 10384 66

原创 xlearn安装与实战

一、Introduction机器学习中的又一个利器,广泛用于Kaggle或类似的数据比赛。 xlearn的优势:1.通用性好,包括主流的算法(lr, fm, ffm 等),用户不用再切换于不同软件之间2.性能好,测试 xLearn 可以比 libfm 快13倍,比 libffm 和 liblinear 快5倍3.易用性和灵活性,xLearn 提供简单的 python 接口...

2018-05-20 15:21:20 8871 13

原创 AI环境配置(一):安装Ubuntu双系统

1. 安装Ubuntu16.04:因为已经有很多教程了,这里只简单列出注意点和参考链接。磁盘管理,尽量划分较大的空间(>50G),尤其是想拿Ubuntu做主力机的话;分区介绍:swap:用作虚拟内存,这个一般和自己的物理内存一般大 /:主要用来存放Linux系统文件 /boot:存放linux内核,用来引导系统的/home:存放用户文件详细分区:分区分区...

2020-05-01 10:02:35 987

原创 推荐系统面试100问(一)-Wide&Deep
原力计划

1. FM定义:考虑了两个互异的特征向量之间的相互关系;y^=w0+∑i=1nwixi+∑i=1n−1∑i=i+1nwi,jxixj\hat{y}= w_{0}+\sum_{i=1}^{n} w_{i} x_{i}+\sum_{i=1}^{n-1} \sum_{i=i+1}^{n} w_{i, j} x_{i} x_{j}y^​=w0​+i=1∑n​wi​xi​+i=1∑n−1​i=i+1...

2020-03-24 11:38:35 1218 1

原创 《推荐系统实践-项亮》读书笔记

文章目录第一章 好的推荐系统1.1 什么是推荐系统:1.2 个性化推荐系统的应用:第二章 利用用户行为数据2.1 用户行为数据简介:2.2 用户行为分析:2.3 实验设计和算法评测2.4 基于邻域的算法:基于用户的协同过滤算法:基于物品的协同过滤算法-ItemCF:UserCF VS ItemCF:2.5 隐语义模型(LFM):2.6 基于图的模型:第三章 推荐系统冷启动问题3.1冷启动简介:3....

2020-03-02 14:39:28 474

原创 KDD-cup 2019比赛总结

1.赛题介绍:比赛要求参与者使用从百度地图收集的历史用户行为数据和一组用户属性数据来推荐合适的交通方式。查询记录:查询记录代表百度地图上用户的一条路线搜索。每个查询记录都由会话ID、配置文件ID、时间戳、原始点的坐标、目的地的坐标组成。例如,[387056,234590,“2018-11-01 15:15:36”,(116.30,40.05),(116.35,39.99)]表示用户在2018...

2019-11-04 20:11:35 2187 2

原创 Andrew Ng-深度学习-第二门课-week3(归一化)

1. 调参流程:参数重要性:学习率α\alphaα > (hidden units/batch_size) > 学习率衰减因子/网络层数 > β1(0.9),β2(0.999),ϵ(10−8)\beta_1(0.9), \beta_2(0.999),\epsilon(10^{-8})β1​(0.9),β2​(0.999),ϵ(10−8)随机调参要比网格调参效果更好。合理选...

2019-08-21 22:32:16 121

原创 Andrew Ng-深度学习-第二门课-week2(优化算法)

从GD出发梳理优化算法的演变和各个优化算法的优缺点。1.梯度下降:1.1 批量梯度下降()参考资料:1. 梯度下降优化算法综述-中文版2. An overview of gradient descent optimization algorithms3. 第二周:优化算法 (Optimization algorithms)Adam那么棒,为什么还对SGD念念不忘 (1) —— 一个框...

2019-08-21 08:37:48 100

原创 通过Anaconda安装Graphviz

简单三步走1.打开Anaconda终端,Open terminal2.在终端窗口一次输入:conda install graphviz pip install graphviz 3.添加环境变量找到Graphviz的安装路径,然后添加到环境变量中即可。我的安装路径是 C:\Users\linxid\Anaconda3\Library\bin\graphvi...

2019-08-08 22:18:01 22735 3

原创 Ubuntu配置(三):命令行汇总

查看硬件信息:CPU:grep "model name" /proc/cpuinfo |awk -F ':' '{print $NF}'内存:dmidecode -t memory |grep -A16 "Memory Device$" |grep "Size:"硬盘:fdisk -lGPU: nvidia-smi文件管理:删除文件:rm [文件名]删除文件夹:rm -rf [文件...

2019-07-29 17:18:11 131

原创 Andrew Ng-深度学习-第二门课-week1(正则化和权重初始化)

文章目录1.训练,验证,测试集2 偏差,方差(Bias /Variance)3 机器学习基础4 正则化4.1 $L2$正则化:为什么$L2$正则化可以防止模型过拟合:4.2 $L1$正则化:为什么L1正则化可以产生稀疏模型:L1正则化如何求导:第二门课,改善深层神经网络:超参数调试、正则化以及优化。第一周课程,深度学习的实践层面。1.训练,验证,测试集数据划分:以前,70%验证集,30%...

2019-05-14 09:16:57 248 1

原创 Andrew Ng-深度学习-第一门课-week4

1.4 深层神经网络1.4.1 深层神经网络符号定义:层数:L=4L=4L=4;输入层的索引为“0”;n[l]{n}^{[l]}n[l]:代表第l层有多少个神经元,n[1]=5{n}^{[1]}=5n[1]=5,n[2]=5{n}^{[2]}=5n[2]=5,n[3]=3{n}^{[3]}=3n[3]=3,n[4]{{n}^{[4]}}n[4]=n[L]=1{{n}^{[L]}}=1n...

2019-05-10 11:28:56 151

原创 Andrew Ng-深度学习-第一门课-week3(激活函数和BP)

1.2.2 第一位代表第一门课,第二位代表第几周,第三位代表第几次视频。编号和视频顺序对应,有些章节视频内容较少进行了省略。对内容进行简单的总结,而不是全面的记录视频的每一个细节,详细可见[1]。1.神经网络和深度学习1.3 浅层神经网络1.3.1 神经网络概述上一周已经学过了逻辑回归,LR可以认为是简单的一层NN。假设我们有一个两层NN:这个神经网络前向传播的计算过程如下:第一层...

2019-05-07 15:12:14 143

原创 Andrew Ng-深度学习-第一门课-week2

1.2.2 第一位代表第一门课,第二位代表第几周,第三位代表第几次视频。编号和视频顺序对应,有些章节视频内容较少进行了省略。对内容进行简单的总结,而不是全面的记录视频的每一个细节,详细可见[1]。1.2 Basics of Neural Network programming1.2.1 Binary classification符号定义 :xxx:表示一个nxn_xnx​维数据,维度为...

2019-05-06 14:57:45 232

原创 《剑指offer》详解-Python

问题3:二维数组中的查找Q: 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。A1:遍历整个二维数组,O(n2)O(n^2)O(n2)A2: 从左上或者右下开始查找。从右上开始查找:如果数组中的数比这个整数大,向左移动一位,如果数组中的数比这个数小,...

2019-04-25 08:25:12 12368 2

原创 leetcode Top 100 Liked Questions Python详解

题目难度备注15. 3SumMedium双指针17. Letter Combinations of a Phone NumberMedium递归15. 3Sum:暴力解法,O(n3)O(n^3)O(n3)class Solution(object): def threeSum(self, nums): """ :...

2019-04-19 12:03:53 1171

原创 SVD+PCA+LDA+LSA/LSI+NMF

参考资料:[1] 一文详解LDA主题模型[2] LDA(Latent Dirichlet Allocation)主题模型[3] LDA-math-汇总 LDA数学八卦

2019-04-15 08:36:49 570

原创 算法面试汇总

华为一面:自我介绍介绍Quora比赛,具体是什么,都做了哪些工作;AiChallenger都做了什么,这个比赛是怎么回事;Word2Vec、Glove、fasttext分别是什么,如何得到的;什么时候开始学NLP,专业和导师是做什么的,是否自学;attention机制是怎么回事;RNN、LSTM等怎么回事,有什么缺陷;attention机制的softmax是怎么做的;trans...

2019-03-19 22:26:55 1042

原创 词向量之word2vec及Tensorflow实现

Word2Vec已经几乎成为NLP任务中,肯定会用到的模型,当然现在我们有了更新的Elmo和Bert,但是Word2Vec作为基本的词向量,仍然需要弄明白。1. 词的Onehot表示:当我们处理文本的时候,我们首先需要将这些文本进行表示,以前大家常用的就是onehot编码。首先对整个文档建立一个字典,每个字/词和索引一一对应。对于文档中的一句话,比如,“可爱的你喜欢吃面包。”。我们就可以根据词...

2019-03-13 22:53:24 658

原创 音乐数据搜集

音乐数据集:1. GTZAN:非常古老(ˉ▽ ̄~),并且非常经典的音乐数据集。但是数据集中同样存在一些问题,标签上的错误[1]。数据描述:提供1000条音频数据,每条30s。一共包括10个音乐风格,每个风格包括100条数据。大小:1.2GPaper:[1] The GTZAN dataset: Its contents, its faults, their effects on ev...

2019-03-01 09:20:20 2794

原创 paper list

2019年1月:

2019-02-01 15:40:50 532

原创 keras学习笔记(六):实现CLR和Focal Loss

参考资料:[1] Focal Loss for Dense Object Detection[2] focal-loss-keras[3] Cyclical Learning Rate (CLR)

2019-01-22 19:45:56 1465 1

原创 keras学习笔记(五):TimeDistributed详解+实战

本文是对[2]的翻译和整理,对简单的部分进行了删减,难懂的部分进行了又一次的讲解。RNN、LSTM、GRU模型是我们常用并且效果非常好的模型,在众多的NLP任务中都可以看到他的身影。但有一层TimeDistributed,使用起来有些难度,尤其对初学者而言。接下来,说明TimeDistributed包装器的原理以及如何使用。内容概览:TimeDistributed层序列学习Problem...

2019-01-14 08:58:05 6677 5

原创 Keras学习笔记(四):MaxPooling1D和GlobalMaxPooling1D的区别

区别:1.GlobalMaxPooling1D:在steps维度(也就是第二维)对整个数据求最大值。比如说输入数据维度是[10, 4, 10],那么进过全局池化后,输出数据的维度则变成[10, 10]。2.MaxPooling1D:也是在steps维度(也就是第二维)求最大值。但是限制每一步的池化的大小。 比如,输入数据维度是[10, 4, 10],池化层大小pooling_size=...

2019-01-13 17:29:49 20103 3

原创 Python技能树(一):Python正则表达式

Python正则表达式,非常强大而且常用的一个模块。之前处理字符串和文本比较少,所以没怎么用,现在开始研究NLP,很多地方需要用到这个模块。大部分是用在文本的前期预处理中。此处强调一点,很多人包括我以前,不太看重文本的预处理,更注重模型。其实是太多的脏数据,训练出来的模型很大程度上也不会有好的效果。作用:正则表达式是一个特殊的字符序列,用于检查一个字符串是否与某种模式匹配。换句话说,我们可以从...

2019-01-01 23:12:37 300

原创 keras学习笔记(三):模型复现

由于模型在构造的时候会引入大量的随机参数,所以神经网络有个非常重要的一个问题就是模型无法复现。在模型的训练过程中,我们需要保证特定模型的性能是不变的。以确定性能的变化是来自模型还是数据集的变化,或者仅仅是一些新的随机样本点带来的结果。下面的代码片段解决模型复现的问题,针对 Python 3 环境,以TensorFlow作为keras的后端。import numpy as npimport te...

2019-01-01 16:25:15 2237

原创 Python技能树

1 os.path( )模块总结:http://www.runoob.com/python3/python3-os-path.htmlhttps://www.cnblogs.com/renpingsheng/p/7065565.htmlhttps://www.cnblogs.com/wuxie1989/p/5623435.html2. logging模块总结:...

2018-11-21 15:23:22 1114

原创 CNN、Capsule详解

参考资料:[1] 从传统神经网络的角度解读Geoffrey Hinton的Capsule模型[2] Dynamic Routing Between Capsules[3] 终于,Geoffrey Hinton那篇备受关注的Capsule论文公开了[4] 看完这篇,别说你还不懂Hinton大神的胶囊网络[5] 吴恩达deeplearning之CNN—卷积神经网络入门[6] 斯坦福CS23...

2018-11-18 20:56:55 855

原创 AI环境配置(二):安装TensorFlow、Keras、Pytorch-GPU最新版

1. TensorFlow-GPU版配置1.1 安装环境与版本:系统:Ubuntu 16.04TensorFlow版本:1.12 GPU版CUDA版本:9.0cuDNN版本:7.3Anaconda版本:4.5.4(没更新,问题不大)1.2参考资料:[1] https://www.jianshu.com/p/2df89a75fabd[2] https://blog.csdn....

2018-11-11 17:17:44 7697

原创 AiChallenger比赛记录之样本不均衡

如何处理样本不均衡1.1 选择合适的评价指标:不要采用准确率(Accuracy);主流评估方法包括:ROC,Precision-Recall curve,F1;1.2若样本极度不均衡,可作为异常检测问题处理;数据挖掘中常见的『异常检测』算法有哪些?1.3 欠采样/过采样:一般操作就是,对于样本比较多的类别进行欠采样,对样本比较少的类别进行过采样。但是对于多分类问题,会比较麻烦,而...

2018-11-07 11:25:17 1213

原创 A Sensitivity Analysis of Convolutional Neural Networks for Sentence:论文解读

针对文本分类问题,作者在这篇论文里,详细讲解了如何对神经网络进行调参。论文主要内容如下。1.论文背景CNN已经广泛应用于文本分类任务中,但是训练模型需要精通模型结构,以及如何进行调参,包括filer的大小,正则化参数等等。而且模型的性能对参数非常敏感。这篇论文主要研究的是,单层神经网络调参。因为对于很多问题,单层CNN已经足够应对。作者最后给出了关于调参的实际建议。2. Baseline模型...

2018-09-29 21:39:25 795

原创 keras学习笔记(二):实现f1_score(多分类、二分类)

首先容易谷歌到的两种方法:1. 构造metricsfrom keras import backend as Kdef f1(y_true, y_pred): def recall(y_true, y_pred): """Recall metric. Only computes a batch-wise average of recall.

2018-09-27 08:59:14 16708 9

翻译 情感分析:几乎包括你需要知道的所有(一)

1.情感分析教程:有一份几乎为所有人准备的情感分析教程,包括程序员,非程序员,营销人员,数据分析师,代理人,销售人员等等。 在本节中,我们将分享各种各样的教程,以便您可以找到适合自己的情绪分析。1.1 为程序员准备的情感分析教程:对于那些对代码和API很熟悉的人,您可以快速找到各种分步指南和资源。 Python是关于数据分析,机器学习和NLP(包括情感分析)教程的最常用编程语言,但...

2018-09-14 22:19:13 22508 18

原创 keras学习笔记(一):30分钟掌握keras

Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow、Theano以及CNTK后端。Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras:简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性)支持CNN和RNN,或二者的结合无缝CPU和GPU切换。我们从三个问题出发,实现keras的快速入门...

2018-08-28 22:15:09 1998

LK光流算法,双线性插值算法讲解|入职必备-图像处理算法.pdf

光流(Optical flow or optic flow)是关于视域中的物体运动检测中的概念。用来描述相对于观察者的运动所造成的观测目标、表面或边缘的运动。 -wikipedia 光流计算所需要满足的两个光学特性假设: 亮度恒定:目标像素点的亮度在帧间运动时亮度(灰度值)保持恒定; 运动微小:像素点不会跟随时间而剧烈变化;

2020-09-30

AI Challenger用户评论情感分析

“AI Challenger 全球AI挑战赛”是面向全球人工智能人才的开源数据集和编程竞赛平台,致力于满足AI人才成长对高质量丰富数据集的需求,推动AI在科研与商业领域结合来解决真实世界的问题。AI Challenger以服务、培养AI人才为使命,打造良性可持续的AI科研与应用新生态。2017年首届大赛发布了千万量级的数据集、一系列兼具学术与产业意义的竞赛、超过200万人民币的奖金,吸引了来自全球65个国家的8892支团队参赛,成为目前国内规模最大的科研数据集平台、以及最大的非商业化竞赛平台。AI Challenger 2018带来十余个全新的数据集与竞赛,以及超过300万人民币的奖金,“用AI挑战真实世界的问题

2019-08-04

AI Challenger 细粒度用户评论情感分析

AI Challenger 全球AI挑战赛”是面向全球人工智能人才的开源数据集和编程竞赛平台,致力于满足AI人才成长对高质量丰富数据集的需求,推动AI在科研与商业领域结合来解决真实世界的问题。AI Challenger以服务、培养AI人才为使命,打造良性可持续的AI科研与应用新生态。2017年首届大赛发布了千万量级的数据集、一系列兼具学术与产业意义的竞赛、超过200万人民币的奖金,吸引了来自全球65个国家的8892支团队参赛,成为目前国内规模最大的科研数据集平台、以及最大的非商业化竞赛平台。AI Challenger 2018带来十余个全新的数据集与竞赛,以及超过300万人民币的奖金,“用AI挑战真实世界的问题

2018-12-15

电子科技大学-杨春图论课件及往年题

图论〔Graph Theory〕是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。

2018-11-27

文本分析--停用词集合

(结合哈工大停用词表、四川大学机器智能实验室停用词库、百度停用词表等)

2018-09-17

数据分析与数据挖掘

邵俊明:男,电子科技大学教授。受国家留学基金委LMU-CSC(慕尼黑大学-留学基金委)项目资助,于2008年赴德国慕尼黑大学计算机科学系世界著名数据挖掘小组攻读博士学位。在攻读博士期间,主要从事数据挖掘的理论研究极其在脑科学等交叉学科的应用研究,其相关论文发表在数据挖掘的三大顶级会议(ACM SIGKDD,IEEE ICDM,SIAM SDM)及权威期刊 IEEE TKDE上。在数据挖掘理论研究的同时,并致力于将其应用于大脑神经影像及水文水资源等交叉学科领域,取得一批原创性研究成果

2018-08-12

算法设计与分析 课件和考试试卷

肖鸣宇:在香港中文大学师从图灵奖获得者姚期智先生,从事理论计算机方向博士学习三年获得博士学位。清华大学、京都大学、巴黎第九大学等高校访问学者。科研方向包括:算法与计算复杂度分析,图论及图算法,智能算法,最优化,参数算法等。 研一上课的全部课件和考试试卷

2018-08-12

Mining of Massive Datasets

The book is based on Stanford Computer Science course CS246: Mining Massive Datasets (and CS345A: Data Mining). The book, like the course, is designed at the undergraduate computer science level with no formal prerequisites. To support deeper explorations, most of the chapters are supplemented with further reading references. The Mining of Massive Datasets book has been published by Cambridge University Press. You can get a 20% discount by applying the code MMDS20 at checkout. By agreement with the publisher, you can download the book for free from this page. Cambridge University Press does, however, retain copyright on the work, and we expect that you will obtain their permission and acknowledge our authorship if you republish parts or all of it. We welcome your feedback on the manuscript.

2018-03-29

哈希算法-求文档相似度

The book is based on Stanford Computer Science course CS246: Mining Massive Datasets (and CS345A: Data Mining). The book, like the course, is designed at the undergraduate computer science level with no formal prerequisites. To support deeper explorations, most of the chapters are supplemented with further reading references. The Mining of Massive Datasets book has been published by Cambridge University Press. You can get a 20% discount by applying the code MMDS20 at checkout. By agreement with the publisher, you can download the book for free from this page. Cambridge University Press does, however, retain copyright on the work, and we expect that you will obtain their permission and acknowledge our authorship if you republish parts or all of it. We welcome your feedback on the manuscript.

2018-03-29

Pattern Recognition and Machine Learning

The dramatic growth in practical applications for machine learning over the last ten years has been accompanied by many important developments in the underlying algorithms and techniques. For example, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic tech... (展开全部)

2018-03-10

算法导论-第三版-高清PDF-带书签

该书是一本十分经典的计算机算法书籍,与高德纳(Donald E.Knuth)的《计算机程序设计艺术》(The Art Of Computer Programming)相媲美。 《算法导论》由Thomas H.Cormen、Charles E.Leiserson、Ronald L.Rivest、Clifford Stein四人合作编著(其中Clifford Stein是第二版开始参与的合著者)。本书的最大特点就是将严谨性和全面性融入在了一起。

2018-03-08

Mastering Machine Learning with Python in six Steps.zip

This book is your practical guide towards novice to master in machine learning with Python in six steps. The six steps path has been designed based on the “Six degrees of separation” theory that states that everyone and everything is a maximum of six steps away. Note that the theory deals with the quality of connections, rather than their existence.

2018-02-27

kaggle入门-Titanic

The sinking of the RMS Titanic is one of the most infamous shipwrecks in history. On April 15, 1912, during her maiden voyage, the Titanic sank after colliding with an iceberg, killing 1502 out of 2224 passengers and crew. This sensational tragedy shocked the international community and led to better safety regulations for ships.

2018-01-30

Matlab相机标定图片

Matlab相机标定,所用图片,一共包含20张图片,教程可见博客 http://my.csdn.net/

2017-10-22

MATLAB相机标定工具箱(最新版)

Bouguet的Matlab标定工具箱立体标定,可单目自标定及双目互标定。用法参见:http://www.vision.caltech.edu/bouguetj/calib_doc/

2017-10-22

coursera-吴恩达-机器学习-代码和文档

吴恩达,机器学习,全部作业的源代码和文档,全部作业均已完成。大家参照代码,完成自己的作业。

2017-10-18

MATLAB双目图计算图像深度

双目视觉是模拟人类视觉原理,使用计算机被动感知距离的方法。从两个或者多个点观察一个物体,获取在不同视角下的图像,根据图像之间像素的匹配关系,通过三角测量原理计算出像素之间的偏移来获取物体的三维信息

2017-10-18

集体智慧编程

本书以机器学习与计算统计为主题背景,专门讲述如何挖掘和分析Web上的数据和资源,如何分析用户体验、市场营销、个人品味等诸多信息,并得出有用的结论,通过复杂的算法来从Web网站获取、收集并分析用户的数据和反馈信息,以便创造新的用户价值和商业价值。全书内容翔实,包括协作过滤技术(实现关联产品推荐功能)、集群数据分析(在大规模数据集中发掘相似的数据子集)、搜索引擎核心技术(爬虫、索引、查询引擎、PageRank算法等)、搜索海量信息并进行分析统计得出结论的优化算法、贝叶斯过滤技术(垃圾邮件过滤、文本过滤)、用决策树技术实现预测和决策建模功能、社交网络的信息匹配技术、机器学习和人工智能应用等。, 本书是Web开发者、架构师、应用工程师等的绝佳选择。

2017-10-17

魔鬼数学大数据时代

一本精彩绝伦的书。一个数学界的超级明星为你揭示混沌的世界表象之下隐藏的数学思维之美,教你运用数学思维的力量,做出更准确的工作与生活决策。《魔鬼数学》运用数学方法分析和解决了很多的日常生活问题,帮助数学门外汉习得用数学思维思考问题的技能。

2017-10-17

成电图像处理第一次作业

1.在“sampleimages”文件夹中有四张照片,请使用MATLAB读取并保存这四张照片到文件夹“savedimages”中,所有图片需要被转换成灰度图片,并用“jpg”“bmp”“png”和“tiff”格式分别保存。

2017-09-28

电子科技大-计算机视觉第一次作业(2017最新版)

电子科技大,计算机视觉作业,2017最新版,根据原版网站答案进行修改得到,疏漏之处,还请多多见谅。 材料网址:http://pages.cs.wisc.edu/~dyer/cs766/hw/hw1/

2017-09-26

机器学习实战

部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic回归算法、支持向量机、AdaBoost集成方法、基于树的回归算法和分类回归树(CART)算法等。第三部分则重点介绍无监督学习及其一些主要算法:k均值聚类算法、Apriori算法、FP-Growth算法。第四部分介绍了机器学习算法的一些附属工具。

2017-09-12

简明python教程中文版

python入门

2017-08-12

简明python教程英文原版

python的经典入门资料

2017-08-12

《浪潮之巅》

经典之作

2017-08-06

Programming for Informatics: Exploring Information中文版

Python for Everybody用书

2017-07-12

OpenCV滚动条的创建示例程序

OpenCV滚动条的创建示例程序

2017-04-19

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除