- 博客(107)
- 资源 (27)
- 收藏
- 关注
原创 可解释性机器学习:从入门到实战
机器学习的巨大成功导致AI应用的爆炸式增长。 研究人员已经将AI用于了各种任务。 不断持续的进步有望产生一个自主系统,它能够感知,学习,做出决策和采取独立行动。 但是,这些系统如果无法向人类解释为何作出这样的决策,那么它们的有效性将会受到限制。如果用户要理解,信任和有效管理新兴的人工智能”合作伙伴“,那么可解释的AI将至关重要。
2019-12-18 19:28:23 10795 2
原创 常用损失函数和评价指标总结
1. 损失函数:2.评价指标:2.1 回归问题:1. MSE: 均方误差(Mean Square Error),范围 [0,+∞)[0,+∞)[0,+∞)MSE=1n∑i=1n(y^i−yi)2M S E=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}MSE=n1i=1∑n(y^i−yi)22. RM...
2019-09-24 22:21:56 11258 1
原创 声音(音乐)分类综述
[1] 手把手教你打造一个曲风分类机器人[2] 怎样用深度学习发现一首歌属于哪个流派?[3] Finding the genre of a song with Deep Learning — A.I. Odyssey part. 1[4] 私人定制——使用深度学习Keras和TensorFlow打造一款音乐推荐系统[5] Building a Music Recommender with ...
2019-02-21 17:19:18 12739 1
原创 Kaggle-Quora Insincere Questions Classification-Solution
Quora Insincere Questions Classification寒假期间参加了Kaggle的一个比赛-QIQC,作为第一个认真参加的Kaggle比赛,最后这个结果实属幸运,感谢啸宇哥和 W^2e的帮助,现在简单记录下比赛中学到的东西。1. 数据预处理数据预处理是这类任务非常重要的一个环节。由于数据是直接爬取,所以数据是非常脏的,首先就要进行数据预处理。数据预处理的另一个作用就...
2019-02-15 20:05:19 1642
翻译 情感分析:几乎包括你需要知道的所有(二)
情感分析是从书面或口头语言中,对特定主题,理解观点的自动过程。在世界上,我们每天生成2.5QB字节的数据,情感分析已成为理解这些数据的关键工具。 这使得公司能够获得关键的见解,并自动化各种流程。但是,它是如何实现的呢?有哪些不同的方法? 它需要注意什么,限制是什么? 你如何在业务中使用情感分析?接下来,您将找到这些问题的答案,以及您需要了解的,关于情感分析的所有内容。 无论你是经验丰富的...
2018-10-28 21:35:24 25819 3
原创 AI Challenger 细粒度用户评论情感分析 (baseline 0.62)
比赛官网:https://challenger.ai/competition/fsauor2018关于情感分析的详细介绍,请参阅我的前一篇文章:https://zhuanlan.zhihu.com/p/44580856先给大家提供一个baseline,线上大概0.62,还可以继续调参。多跑几次,简单融合可以继续提分。代码很简单,使用GPU运行快,修改文件路径既可很快复现。1.运行环境:系...
2018-09-18 21:42:24 16401 70
翻译 情感分析:几乎包括你需要知道的所有(一)
1.情感分析教程:有一份几乎为所有人准备的情感分析教程,包括程序员,非程序员,营销人员,数据分析师,代理人,销售人员等等。 在本节中,我们将分享各种各样的教程,以便您可以找到适合自己的情绪分析。1.1 为程序员准备的情感分析教程:对于那些对代码和API很熟悉的人,您可以快速找到各种分步指南和资源。 Python是关于数据分析,机器学习和NLP(包括情感分析)教程的最常用编程语言,但...
2018-09-14 22:19:13 29042 19
原创 xlearn安装与实战
一、Introduction机器学习中的又一个利器,广泛用于Kaggle或类似的数据比赛。 xlearn的优势:1.通用性好,包括主流的算法(lr, fm, ffm 等),用户不用再切换于不同软件之间2.性能好,测试 xLearn 可以比 libfm 快13倍,比 libffm 和 liblinear 快5倍3.易用性和灵活性,xLearn 提供简单的 python 接口...
2018-05-20 15:21:20 12482 14
原创 论文推荐:最新榜单评估VLM的富文本理解
1. 📌 元数据概览:2. ✨ 核心观点与亮点:3. 📚 论文的核心内容,模型结构,关键术语/概念:4. 🌟 实验结果:5. 🔄 总结归纳:6.❓引发思考的问题:
2024-04-28 09:39:58 1096
原创 每日论文推荐:我们距离GPT-4V有多远,最接近GPT-4V的开源多模态大模型
📌 元数据概览:✨ 核心观点与亮点:📚 论文的核心内容,模型结构,关键术语/概念:🌟 实验结果:🔄 总结归纳:❓ 引发思考的问题:
2024-04-28 09:26:17 956
原创 每日论文推荐:微软提出最强小模型Phi-3
📌 元数据概览:标题:这篇论文的标题是“Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone”,从标题可以推测,论文可能讨论的是一种能够在手机上本地运行的高度能语言模型。作者:由 Microsoft 的团队撰写,这是一个在人工智能和机器学习领域具有深厚背景和专业知识的团队。链接:论文的链接是 https://arxiv.org/pdf/2404.14219.pdf,这是预印本服务器 arXiv
2024-04-26 09:36:50 834
原创 每日论文推荐:LLaMA3的低比特量化效果详细总结
📌 元数据概览:标题:这篇论文的标题是“How Good Are Low-bit Quantized LLAMA3 Models? An Empirical Study”,它可能探讨的是低比特权量化技术在LLAMA3模型上的应用效果和性能。作者:论文的作者包括来自香港大学、北京航空航天大学、苏黎世联邦理工学院等机构的研究人员。他们的专业领域可能涉及计算机科学、机器学习和人工智能。链接:论文的具体网址是 https://arxiv.org/pdf/2404.14047.pdf,这个链接指向了论文的
2024-04-26 09:34:11 1155
原创 每日论文推荐:字节提出视觉定位token来提升VLM模型的定位能力
论文提出了一个名为Groma的新型多模态大型语言模型,该模型具备局部化的视觉感知能力,能够更好地处理区域级别的任务,如区域字幕和视觉定位。
2024-04-23 09:28:44 1131
原创 每日论文推荐:字节最新提出大规模的以文本中心的视觉指令微调来提升VLM模型
这篇论文提出了一个创新的方法来生成大规模、高质量的VQA指令调整数据集,并通过该数据集训练的TextSquare模型在多个基准测试中取得了优异的性能。这项工作不仅为开源模型提供了一个追赶闭源模型的途径,也为未来如何进一步提升数据量和质量提供了有价值的见解。
2024-04-23 09:13:30 594
原创 每日论文推荐:Prismatic VLMs VLM设计经验总结
本文通过一系列实验探索了视觉条件语言模型(VLMs)的设计空间,提出了改进训练的关键见解,并发布了PRISM系列模型,这些模型在多个基准测试中超越了现有的开源VLMs。
2024-04-22 09:29:32 939
原创 每日论文推荐:LLaVA-Gemma基于Gemma的多模态基础模型
📌 元数据概览:标题:“LLaVA-Gemma: Accelerating Multimodal Foundation Models with a Compact Language Model”作者:Musashi Hinck, Matthew L. Olson, David Cobbley, Shao-Yen Tseng, Vasudev Lal;来自Intel Labs的Cognitive AI团队。链接:arXiv:2404.01331 https://arxiv.org/pdf/2404
2024-04-22 09:23:40 592
原创 国内20家公司大模型岗位面试经验汇总
淘天集团的大模型研究将主要围绕两个场景展开:一是搜广推,二是逛逛的内容化。团队组建工作由淘天集团CEO戴珊、淘天集团CTO若海、阿里妈妈CTO郑波等人共同牵头。介绍链接。如何训练ocr任务实验的setting,ocr任务影响如何高分辨率训练,再在小分辨率上,会不会崩掉输出bbox有没有好的方式HR基本信息确认:考研进入电子科技大,为什么为什么进入了诺亚代表性的工作如何解决问题的,国内在做语言大模型的多一些。国内在做多模态大模型的如何评测,评估这些大模型的。如何看待刷榜的问题。
2024-04-05 10:59:08 1256
原创 字节新作:图像生成质量超越DiT
综合以上内容,VAR模型通过创新的“下一尺度预测”方法,在图像生成领域取得了突破性进展,不仅性能超越了现有的强模型,还展现了与大型语言模型相似的缩放定律和零样本泛化能力,为视觉生成和统一学习提供了新的视角和工具。主张:VAR模型通过重新定义图像自回归学习为从粗糙到精细的“下一尺度预测”,与传统的栅格扫描“下一标记预测”不同,这种方法简单直观,使自回归变换器能够快速学习视觉分布,并在图像生成方面首次超越了扩散变换器。🌟每日更新最新高质量论文,关注我,时刻关注最新大模型进展。
2024-04-05 10:24:54 882
原创 探索ChartLlama,一个由GPT-4驱动的多模态LLM,它正在革新我们理解和创造图表数据的方式!
作者:Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, Zhibin Wang, Gang Yu, Bin Fu, Hanwang Zhang。标签:Multimodal LLM, Chart Understanding, Chart Generation, GPT-4, Instruction Tuning。标题:ChartLlama: A Multimodal LLM for Chart Understanding and Generation。
2024-04-02 09:41:57 539
原创 CMU神秘token贡献ChatGPT安全措施|【2023-0802】【第八期】
一、大咖观点:二、大模型评测:三、大模型实用教程:四、大模型原理:五、类ChatGPT模型:六、商业投资:
2023-08-08 08:18:52 312
原创 LLaMA2可商用|GPT-4变笨|【2023-0723】【第七期】
一、大咖观点:傅盛:ChatGPT时代如何创业 - BOTAI - 博客园Google 已经被OpenAI 超越了吗?| AlphaGo 之父深度访谈《人民日报》:大模型的竞争,是国家科技战略的竞争WAIC 2023 | 张俊林:大语言模型带来的交互方式变革二、大模型评测:Llama 2宇宙大爆炸!伯克利实测排第8,iPhone本地可跑,一大波应用免费玩,LeCun狂转关于GPT-4在变笨,有人写了篇论文证实了这一点三、大模型实用教程:VS Code整合AI助手改变游戏规则,
2023-07-25 08:24:13 1578
原创 ChatGPT解释器详细教程|Bard上手指南|【2023-0716】【第六期】
点击加入->【智子纪元-AIGC】技术交流群一、大咖观点:三、大模型实用教程:四、大模型原理:五、类ChatGPT模型:六、商业投资:
2023-07-18 08:55:45 601
原创 ChatGPT开发【一】:打造与ChatGPT默契互动的绝佳输入格式
Chatgpt由Openai最先进的型号和gpt-4提供支持。我们可以使用OpenAI API使用或GPT-4构建自己的应用程序。聊天模型将一系列消息作为输入,然后返回AI写的消息作为输出。本指南用一些示例API调用说明了聊天格式。
2023-07-11 08:48:43 1449
原创 AIGC行业周刊【2023-0709】【第六期】2023年世界人工智能大会大佬发言汇总
点击加入->【智子纪元-AIGC】技术交流群一、大咖观点:二、大模型评测:三、大模型实用教程:四、大模型原理:五、类ChatGPT模型:六、商业投资:
2023-07-11 08:18:47 366
原创 AIGC行业周刊【2023-0625】【第六期】万字长文:LLM - 大语言模型发展简史
AIGC行业周刊【2023-0625】【第六期】万字长文:LLM - 大语言模型发展简史
2023-07-03 21:32:28 680
原创 AIGC大记事【2023-0625】【第五期】:《时代》专访ChatGPT之父:人工智能影响经济还需要很多年
大咖观点:《时代》专访ChatGPT之父:人工智能影响经济还需要很多年孙正义:我每天和ChatGPT聊天,一场巨大革命即将到来,软银“终将统治世界!”刘慈欣谈 ChatGPT:人类的无能反而是人类最后的屏障AI时代已来,吴恩达呼吁向每个孩子教授人工智能知识【强烈推荐】OpenAI Shyamal 分享LLM 创业前沿方向,我们所处的历史阶段,AI-IMPACT框架!陶哲轩自曝用了「满血」GPT-4:人类对信息技术的期待全部需要校准影视业热议AIGC,替代人工效率几何?大模型评测:
2023-06-27 22:38:53 1048
原创 目标检测经典模型(二)--fast rcnn
相比于RCNN的改进:Fast RCNN将原始图片输入卷积网络中得到特征图,再使用建议框对特征图提取特征框,大大减少了计算量建议框大小不一,通过ROI池化层将特征框转化为相同大小;Fast RCNN里没有SVM分类器和回归器了,分类和预测框的位置通过卷积神经网络输出为了提高计算速度,网络最后使用SVD代替全连接层算法流程:输入一张图片,通过Selective Search得到候选建议框;将原始图片输入到CNN中得到特征图,并且根据建议框,得到候选框在特征图中对应的位置(ROI);使用R
2021-05-21 18:49:56 353
原创 目标检测经典模式(一)--RCNN
使用深度学习解决目标检测任务的简单方法:输入一张图片将图片分割成不同的区域认为每个区域是一张独立的图像将这些分割开的图像输入到CNN分类器中,对其进行分类,得到分类结果;小的区域得到相应的类别后,将这些区域组合起来便得到带有检测物体的原图ps:这种方法的问题:图片中的物体具有不同的长宽比和空间位置需要大量的区域才能覆盖这些目标,结果导致计算量很大物体的形状也会有所不同region-based CNN:RCNN核心思想:使用selective search在图片中得到候选区域。
2021-05-21 18:48:05 333
原创 AI环境配置(一):安装Ubuntu双系统
1. 安装Ubuntu16.04:因为已经有很多教程了,这里只简单列出注意点和参考链接。磁盘管理,尽量划分较大的空间(>50G),尤其是想拿Ubuntu做主力机的话;分区介绍:swap:用作虚拟内存,这个一般和自己的物理内存一般大 /:主要用来存放Linux系统文件 /boot:存放linux内核,用来引导系统的/home:存放用户文件详细分区:分区分区...
2020-05-01 10:02:35 1941
原创 推荐系统面试100问(一)-Wide&Deep
1. FM定义:考虑了两个互异的特征向量之间的相互关系;y^=w0+∑i=1nwixi+∑i=1n−1∑i=i+1nwi,jxixj\hat{y}= w_{0}+\sum_{i=1}^{n} w_{i} x_{i}+\sum_{i=1}^{n-1} \sum_{i=i+1}^{n} w_{i, j} x_{i} x_{j}y^=w0+i=1∑nwixi+i=1∑n−1i=i+1...
2020-03-24 11:38:35 3780 1
原创 《推荐系统实践-项亮》读书笔记
文章目录第一章 好的推荐系统1.1 什么是推荐系统:1.2 个性化推荐系统的应用:第二章 利用用户行为数据2.1 用户行为数据简介:2.2 用户行为分析:2.3 实验设计和算法评测2.4 基于邻域的算法:基于用户的协同过滤算法:基于物品的协同过滤算法-ItemCF:UserCF VS ItemCF:2.5 隐语义模型(LFM):2.6 基于图的模型:第三章 推荐系统冷启动问题3.1冷启动简介:3....
2020-03-02 14:39:28 1340
原创 KDD-cup 2019比赛总结
1.赛题介绍:比赛要求参与者使用从百度地图收集的历史用户行为数据和一组用户属性数据来推荐合适的交通方式。查询记录:查询记录代表百度地图上用户的一条路线搜索。每个查询记录都由会话ID、配置文件ID、时间戳、原始点的坐标、目的地的坐标组成。例如,[387056,234590,“2018-11-01 15:15:36”,(116.30,40.05),(116.35,39.99)]表示用户在2018...
2019-11-04 20:11:35 4236 5
原创 Andrew Ng-深度学习-第二门课-week3(归一化)
1. 调参流程:参数重要性:学习率α\alphaα > (hidden units/batch_size) > 学习率衰减因子/网络层数 > β1(0.9),β2(0.999),ϵ(10−8)\beta_1(0.9), \beta_2(0.999),\epsilon(10^{-8})β1(0.9),β2(0.999),ϵ(10−8)随机调参要比网格调参效果更好。合理选...
2019-08-21 22:32:16 386
原创 Andrew Ng-深度学习-第二门课-week2(优化算法)
从GD出发梳理优化算法的演变和各个优化算法的优缺点。1.梯度下降:1.1 批量梯度下降()参考资料:1. 梯度下降优化算法综述-中文版2. An overview of gradient descent optimization algorithms3. 第二周:优化算法 (Optimization algorithms)Adam那么棒,为什么还对SGD念念不忘 (1) —— 一个框...
2019-08-21 08:37:48 266
原创 通过Anaconda安装Graphviz
简单三步走1.打开Anaconda终端,Open terminal2.在终端窗口一次输入:conda install graphviz pip install graphviz 3.添加环境变量找到Graphviz的安装路径,然后添加到环境变量中即可。我的安装路径是 C:\Users\linxid\Anaconda3\Library\bin\graphvi...
2019-08-08 22:18:01 40629 4
原创 Ubuntu配置(三):命令行汇总
查看硬件信息:CPU:grep "model name" /proc/cpuinfo |awk -F ':' '{print $NF}'内存:dmidecode -t memory |grep -A16 "Memory Device$" |grep "Size:"硬盘:fdisk -lGPU: nvidia-smi文件管理:删除文件:rm [文件名]删除文件夹:rm -rf [文件...
2019-07-29 17:18:11 340
LK光流算法,双线性插值算法讲解
2020-09-30
AI Challenger用户评论情感分析
2019-08-04
AI Challenger 细粒度用户评论情感分析
2018-12-15
电子科技大学-杨春图论课件及往年题
2018-11-27
数据分析与数据挖掘
2018-08-12
算法设计与分析 课件和考试试卷
2018-08-12
Mining of Massive Datasets
2018-03-29
哈希算法-求文档相似度
2018-03-29
Pattern Recognition and Machine Learning
2018-03-10
算法导论-第三版-高清PDF-带书签
2018-03-08
Mastering Machine Learning with Python in six Steps.zip
2018-02-27
kaggle入门-Titanic
2018-01-30
MATLAB相机标定工具箱(最新版)
2017-10-22
MATLAB双目图计算图像深度
2017-10-18
集体智慧编程
2017-10-17
魔鬼数学大数据时代
2017-10-17
成电图像处理第一次作业
2017-09-28
电子科技大-计算机视觉第一次作业(2017最新版)
2017-09-26
机器学习实战
2017-09-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人