回溯算法
回溯算法也叫试探算法,是一种系统的搜索问题解的方法。回溯法可以看做是递归的一种特殊形式。
在回溯时,应当:保存当前步骤,如果是一个解就输出,维护状态,使搜索路径尽量不重复(体现在记录当期数据是否被访问)。必要时,应该对不可能的解进行剪枝。回溯法可以被认为是一个有过剪枝过程的DFS
子集和问题
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
子集和问题的一个实例为〈S,t〉。其中,S={ x1 , x2 ,…,xn }是一个正整数的集合,c是一个正整数。子集和问题判定是否存在S的一个子集S1,使得:
。
试设计一个解子集和问题的回溯法。
对于给定的正整数的集合S={ x1 , x2 ,…,xn }和正整数c,计算S 的一个子集S1,使得:
。
Input
输入数据的第1 行有2 个正整数n 和c(n≤10000,c≤10000000),n 表示S 的大小,c是子集和的目标值。接下来的1 行中,有n个正整数,表示集合S中的元素。
Output
将子集和问题的解输出。当问题无解时,输出“No Solution!”。
Sample Input
5 10
2 2 6 5 4
Sample Output
2 2 6
#include <bits/stdc++.h>
using namespace std;
int n, c, ans[10010], v[10010], a[10010], flag = 0;
void dfs(int temp)
{
if(flag) return;
for(int i = 0; i < n; i++)
{
if(v[i] == 0 && c >= 0)
{
if(c - a[i] >= 0)
{
v[i] = 1;
c -= a[i];
ans[temp] = a[i];
if(c == 0)
{
for(int j = 0; j <= temp; j++) // 注意j<=temp, 因为递归是从0开始,这个不是数组含义
{
if(j == 0)
printf("%d", ans[j]);
else
printf(" %d", ans[j]);
}
printf("\n");
flag =1;
return;
}
else // 不等于0时,继续进行递归
dfs(temp + 1);
if(flag == 1) return; // 记得判断一下
c += a[i]; // 条件清空
v[i] = 0;
}
}
}
}
int main()
{
int sum = 0;
cin>>n>>c;
for(int i = 0; i < n; i++)
{
cin>>a[i];
sum += a[i];
}
if(sum < c)
{
printf("No Solution!\n");
return 0;
}
memset(ans, 0, sizeof(ans));
memset(v, 0, sizeof(v));
dfs(0); // 从0开始
if(flag == 0)
printf("No Solution!\n");
return 0;
}
工作分配问题
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
设有n件工作分配给n个人。将工作i分配给第j个人所需的费用为 cij。试设计一个算法,为每一个人都分配1 件不同的工作,并使总费用达到最小。
设计一个算法,对于给定的工作费用,计算最佳工作分配方案,使总费用达到最小。
Input
输入数据的第一行有1 个正整数n (1≤n≤20)。接下来的n行,每行n个数,表示工作费用。
Output
将计算出的最小总费用输出。
Sample Input
3
10 2 3
2 3 4
3 4 5
Sample Output
9
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
int ans, sum, a[25][25], vis[25] = {0}, n;
void dfs(int i, int sum)
{
if(sum < ans && i >= n)
{
ans = sum;
return;
}
if(sum < ans) // 注意这个判断条件
{
for(int j = 0; j < n; j++)
{
if(vis[j] == 0)
{
vis[j] = 1;
dfs(i + 1, sum + a[i][j]);
vis[j] = 0; // 清空标志位
}
}
}
}
int main()
{
cin>>n;
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
cin>>a[i][j];
}
}
ans = INF; // 赋值 最大值
dfs(0, 0); // 都是从0开始输入数组的,所以从0开始
printf("%d\n", ans);
return 0;
}
整数变换问题
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
整数变换问题。关于整数i的变换f和g定义如下:f(i)=3i;
试设计一个算法,对于给定的2 个整数n和m,用最少的f和g变换次数将n变换为m。例如,可以将整数15用4 次变换将它变换为整数4:4=gfgg(15)。当整数n不可能变换为整数m时,算法应如何处理?
对任意给定的整数n和m,计算将整数n变换为整数m所需要的最少变换次数。
Input
输入数据的第一行有2 个正整数n和m。n≤100000,m≤1000000000。
Output
将计算出的最少变换次数以及相应的变换序列输出。第一行是最少变换次数。第2 行是相应的变换序列。
Sample Input
15 4
Sample Output
4
gfgg
Hint
#include<iostream>
using namespace std;
int k=1;
int c=0;//用来记录字符数组位置
char a[100] = {'\0'};//用来存放变换序列
int select(int n,int m,int s)
{
if(s==0)
return 3*n;
else
return n/2;
}
bool dfs(int step,int n,int m)
{
int num;
if(step>k)
return false;
num=n;
for(int i=0;i<2;i++)
{
num=select(n,m,i);
if(num==m||dfs(step+1,num,m))
{
if(i==0)
a[c]='f';
else
a[c]='g';
c++;
return true;
}
}
return false;
}
int main()
{
int m,n;
cin>>n>>m;
k = 1;
while(!dfs(1,n,m))
k++;
cout<<k<<endl;
//int i=0;
for(int i=0;i<c;i++)
cout<<a[i];
return 0;
}
运动员最佳匹配问题
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
羽毛球队有男女运动员各n 人。给定2 个n×n 矩阵P 和Q。P[i][j]是男运动员i 和女运动员j配对组成混合双打的男运动员竞赛优势;Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势。由于技术配合和心理状态等各种因素影响,P[i][j]不一定等于Q[j][i]。男运动员i和女运动员j配对组成混合双打的男女双方竞赛优势为P[i][j]*Q[j][i]。
设计一个算法,计算男女运动员最佳配对法,使各组男女双方竞赛优势的总和达到最大。
设计一个算法,对于给定的男女运动员竞赛优势,计算男女运动员最佳配对法,使各组男女双方竞赛优势的总和达到最大。
Input
输入数据的第一行有1 个正整数n (1≤n≤20)。接下来的2n 行,每行n个数。前n行是p,后n行是q。
Output
将计算出的男女双方竞赛优势的总和的最大值输出。
Sample Input
3
10 2 3
2 3 4
3 4 5
2 2 2
3 5 3
4 5 1
Sample Output
52
Hint
#include <bits/stdc++.h>
using namespace std;
int n, ans, a[22][22], b[22][22], vis[22], pre[22];
void dfs(int x, int s) // 和明显,X是类似于累加的次数,应该和n进行比较,s是最终结果的东西
{
if(x > n) // x与n进行比较
{
ans = max(ans, s);
return;
}
if(s + pre[n] - pre[x - 1] < ans) // n 和 x - 1
return;
for(int i = 1; i <= n; i++)
{
if(!vis[i])
{
vis[i] = 1;
dfs(x + 1, s + a[x][i] * b[i][x]); // 注意是a*b
vis[i] = 0;
}
}
}
int main()
{
cin>>n;
for(int i = 1; i <= n; i++)
for(int j =1; j <= n; j++)
cin>>a[i][j];
for(int i = 1; i <= n; i++)
for(int j =1; j <= n; j++)
cin>>b[i][j];
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
pre[i] = max(pre[i], a[i][j] * b[j][i]); // a b 进行计算
}
pre[i] += pre[i - 1];
}
dfs(1, 0); // 1 0
cout<<ans<<endl;
return 0;
}