python Matplotlib.pyplot.title 绘图设置标题

plt.title

import random
import matplotlib.pyplot as plt

# 生成随机数据集
x = range(10)
y = [random.randint(1,100) for i in range(10)]
# 绘制折线图
plt.plot(x,y)
############################### 设置标题 ###############################
plt.title(
    label = "This is title",
    fontdict={
        "fontsize":20,  # 字体大小
        "color":"white",# 字体颜色
        "family":"Times New Roman",     # 字体类型,可参考:https://blog.csdn.net/weixin_45492560/article/details/123980725
        "fontweight":"black",           # 字体线条粗细,可选参数 :{"light": ,"normal":,"medium":,"semibold":,"bold":,"heavy":,"black"}
        "fontstyle":"italic",           # 字体类型,可选参数 :normal、italic 斜体、oblique倾斜
        "verticalalignment":"center",   # 设置水平对齐方式 ,可选参数 :center、top、bottom、baseline
        "horizontalalignment":"center", # 设置垂直对齐方式,可选参数:left、right、center
        "rotation":0, # 旋转角度,可选参数为:vertical,horizontal 也可以为数字
        "alpha":1,    # 透明度,参数值0至1之间
        "backgroundcolor":"black",# 标题背景颜色
        # 设置外边框
        "bbox":{
            "boxstyle":"round",  # 边框类型,参考:https://vimsky.com/examples/usage/python-matplotlib.patches.BoxStyle-mp.html
            "facecolor":"black", # 背景颜色,好像与上述 backgroundcolor 有冲突
            "edgecolor":"red",   # 边框线条颜色
        },
    },
)
#######################################################################
plt.show()

在这里插入图片描述

ax.set_title

  • 本文只展现与上文不同之处
##################### 与plt.title 不同之处 #####################
fig,ax=plt.subplots(1,1)
ax.plot(x,y)

fontdict={......} # 该字典与上文的fontdict一致

ax.set_title(
    "This is title",
    fontdict = fontdict
)

plt.show()
### 使用 Matplotlib Pyplot 绘制线条 为了展示如何使用 `matplotlib.pyplot` 来绘制线条,可以采用简单的例子来说明这一过程。下面是一个具体的实例,该实例展示了怎样通过 PythonMatplotlib 库中的 pyplot 模块完成绘图操作。 ```python import matplotlib.pyplot as plt data = [1, 2, 3, 4, 5, 4, 2, 4, 6, 7] plt.plot(data) # 调用 plot 方法绘制数据列表表示的线条 plt.show() # 显示所绘制的图像 ``` 上述代码片段定义了一组简单数值作为待绘制的数据集,并调用了 `plot()` 函数来进行实际的绘图工作[^1]。当执行到 `show()` 命令时,则会弹出窗口显示出这条由给定数据点连接而成的折线图表。 对于更复杂的场景下,比如想要在同一张图上同时展现多个函数曲线的情况: ```python import numpy as np import matplotlib.pyplot as plt X = np.linspace(-np.pi, np.pi, 256, endpoint=True) C, S = np.cos(X), np.sin(X) plt.figure(figsize=(8, 6)) # 设置图片大小 plt.plot(X, C, label='Cosine')# 添加标签区分不同曲线 plt.plot(X, S, label='Sine') plt.legend() # 展现图例 plt.title('Trigonometric Functions') # 图表标题 plt.xlabel('Angle (radians)') # X轴描述 plt.ylabel('Value') # Y轴描述 plt.grid(True) # 启用网格辅助查看坐标位置 plt.axhline(0, color='black',linewidth=0.5) # 加入水平基线 plt.axvline(0, color='black',linewidth=0.5) # 加入垂直基线 plt.show() ``` 这段程序不仅实现了正弦波形和余弦波形的同时呈现,还加入了诸如图例、标题以及轴名等元素以增强可视化效果;另外也启用了网格功能以便于观察具体数值对应的位置关系[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值