erlang算法系列-leetcode 2162. 设置时间的最少代价(中等)

解题思路:

M = TargetSeconds div 60,

S = TargetSeconds rem 60,

贪心处理两种情况:

1、M*100+S,注意超过9999的情况;

2、(M-1)*100+S+60,注意M=0或则S+60>99的情况。

设置时间的最少代价-原题

常见的微波炉可以设置加热时间,且加热时间满足以下条件:

至少为 1 秒钟。
至多为 99 分 99 秒。
你可以 最多 输入 4 个数字 来设置加热时间。如果你输入的位数不足 4 位,微波炉会自动加 前缀 0 来补足 4 位。微波炉会将设置好的四位数中,前 两位当作分钟数,后 两位当作秒数。它们所表示的总时间就是加热时间。比方说:

你输入 9 5 4 (三个数字),被自动补足为 0954 ,并表示 9 分 54 秒。
你输入 0 0 0 8 (四个数字),表示 0 分 8 秒。
你输入 8 0 9 0 ,表示 80 分 90 秒。
你输入 8 1 3 0 ,表示 81 分 30 秒。
给你整数 startAt ,moveCost ,pushCost 和 targetSeconds 。一开始,你的手指在数字 startAt 处。将手指移到 任何其他数字 ,需要花费 moveCost 的单位代价。每 输入你手指所在位置的数字一次,需要花费 pushCost 的单位代价。

要设置 targetSeconds 秒的加热时间,可能会有多种设置方法。你想要知道这些方法中,总代价最小为多少。

请你能返回设置 targetSeconds 秒钟加热时间需要花费的最少代价。

请记住,虽然微波炉的秒数最多可以设置到 99 秒,但一分钟等于 60 秒。

示例 1:

输入:startAt = 1, moveCost = 2, pushCost = 1, targetSeconds = 600
输出:6
解释:以下为设置加热时间的所有方法。
- 1 0 0 0 ,表示 10 分 0 秒。
  手指一开始就在数字 1 处,输入 1 (代价为 1),移到 0 处(代价为 2),输入 0(代价为 1),输入 0(代价为 1),输入 0(代价为 1)。
  总代价为:1 + 2 + 1 + 1 + 1 = 6 。这是所有方案中的最小代价。
- 0 9 6 0,表示 9 分 60 秒。它也表示 600 秒。
  手指移到 0 处(代价为 2),输入 0 (代价为 1),移到 9 处(代价为 2),输入 9(代价为 1),移到 6 处(代价为 2),输入 6(代价为 1),移到 0 处(代价为 2),输入 0(代价为 1)。
  总代价为:2 + 1 + 2 + 1 + 2 + 1 + 2 + 1 = 12 。
- 9 6 0,微波炉自动补全为 0960 ,表示 9 分 60 秒。
  手指移到 9 处(代价为 2),输入 9 (代价为 1),移到 6 处(代价为 2),输入 6(代价为 1),移到 0 处(代价为 2),输入 0(代价为 1)。
  总代价为:2 + 1 + 2 + 1 + 2 + 1 = 9 。


示例 2:

输入:startAt = 0, moveCost = 1, pushCost = 2, targetSeconds = 76
输出:6
解释:最优方案为输入两个数字 7 6,表示 76 秒。
手指移到 7 处(代价为 1),输入 7 (代价为 2),移到 6 处(代价为 1),输入 6(代价为 2)。总代价为:1 + 2 + 1 + 2 = 6
其他可行方案为 0076 ,076 ,0116 和 116 ,但是它们的代价都比 6 大。

提示:

0 <= startAt <= 9
1 <= moveCost, pushCost <= 105
1 <= targetSeconds <= 6039

-spec min_cost_set_time(StartAt :: integer(), MoveCost :: integer(), PushCost :: integer(), TargetSeconds :: integer()) -> integer().
min_cost_set_time(StartAt, MoveCost, PushCost, TargetSeconds) ->
    M = TargetSeconds div 60,
    S = TargetSeconds rem 60,
    List = do_list(M*100+S, []),
    if
        M*100+S < 10000 ->
            Ans = do_min(List, StartAt, MoveCost, PushCost, 0);
        true ->
            Ans = (MoveCost + PushCost) * 4
    end,

    if
        M > 0 andalso S < 40 ->
            List1 = do_list((M-1)*100+S+ 60, []),
            Ans1 = do_min(List1, StartAt, MoveCost, PushCost, 0),
            min(Ans1, Ans);
        true ->
            Ans
    end.

do_min([], StartAt, MoveCost, PushCost, Ans) ->
    Ans;
do_min([N | List], StartAt, MoveCost, PushCost, Ans) ->
    if
        N =:= StartAt ->
           do_min(List, StartAt, MoveCost, PushCost, Ans + PushCost);
        true ->
            do_min(List, N, MoveCost, PushCost, Ans + PushCost + MoveCost)
    end. 

do_list(0, List) ->
    List;
do_list(Num, List) ->
    do_list(Num div 10, [Num rem 10 | List]).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值