斐波那契数列

我们知道斐波那契数列:1 1 2 3 5 8 13 ……

这个可以通过递归或DP来实现。但是如果我们要求第10^9个斐波那契数列怎么办?

这就没办法用递归去跑了。

这里则有一个求矩阵幂方法。我们先记住公式……

[Fn+1,  Fn    = [1 1      的 n 次方

 Fn-1, Fn ]         1 0 ]


那么则可以把Fn表示成多个矩阵相乘的形式。

然后我们要做的,是求矩阵的 n 次幂:

A^n = A^(n/2) * A^(n/2) ,当n为偶数

A^n = A^((n-1)/2) * A^((n-1)/2) * A,当n为奇数

通过这种方式可以将复杂度降到 log(n)。

然后,这里涉及到两个矩阵相乘,如果两个矩阵可以相乘,比如A,B相乘。

则说明A的列等于B的行。

我们知道公式 Cij = k求和 { Aik * Bkj }


至此,完成了我们的思路,下面是代码。


class Solution {
public:
    struct mat {
       int m[2][2]; 
    };
    
    int Fibonacci(int n) {
        mat base;
        base.m[0][0] = 1;
        base.m[0][1] = 1;
        base.m[1][0] = 1;
        base.m[1][1] = 0;
        mat res = expMatrix(base, n);
        return res.m[0][1];
    }
    
    mat expMatrix(mat base, int n) {
        if (0 == n) {
            mat res;
            res.m[0][0] = 1;
            res.m[0][1] = 0;
            res.m[1][0] = 0;
            res.m[1][1] = 1;
            return res;
        }
        if (1 == n) {
            return base;
        }
        mat res = expMatrix(base, n >> 1);
        res = mulMatrix(res, res);
        if (1 == n % 2) {
            res = mulMatrix(res, base);
        }
        return res;
    }
    
    mat mulMatrix(mat a, mat b) {
        mat res;
        memset(res.m, 0, sizeof(res.m));
        for (int i = 0; i < 2; i++) {
            for (int j = 0; j < 2; j++) {
                for (int k = 0; k < 2; k++) {
                    res.m[i][j] += a.m[i][k] * b.m[k][j];
                }
            }
        }
        return res;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值