给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
注意:
每个数组中的元素不会超过 100
数组的大小不会超过 200
示例 1:
输入: [1, 5, 11, 5]
输出: true
解释: 数组可以分割成 [1, 5, 5] 和 [11].
示例 2:
输入: [1, 2, 3, 5]
输出: false
解释: 数组不能分割成两个元素和相等的子集.
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/partition-equal-subset-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
典型的背包问题,在n个物品中选出一定物品,填满sum/2的背包
F(n,C) 考虑将n个物品填满容量为C的背包
F(i,C)=F(i-1,c)||F(i,c-w(i))
时间复杂度:O(nsum/2)=O(nsum)
递归解法
//记忆搜索法
private int[][] mem;
/**
*
*/
public boolean canPartition(int[] nums) {
int sum = 0;
for (int i = 0; i < nums.length; i++) {
sum += nums[i];
}
//如果所有的总和不能除以2 说明没有满足条件的
if (sum % 2 != 0) {
return false;
}
mem = new int[nums.length][sum / 2 + 1];
for (int i = 0; i < mem.length; i++) {
Arrays.fill(mem[i], -1);
}
//背包问题解法 F(i,C)=F(i-1,C)|| F(i,C-w(i));
//包含它 或者不包含
return recursionPartition(nums, nums.length - 1, sum / 2);
}
private boolean recursionPartition(int[] nums, int index, int sum) {
if (sum == 0) {
return true;
}
if (index < 0 || sum < 0) {
return false;
}
if (mem[index][sum] != -1) {
return mem[index][sum] == 1;
}
mem[index][sum] = recursionPartition(nums, index - 1, sum) ||
recursionPartition(nums, index - 1, sum - nums[index]) ? 1 : 0;
return mem[index][sum] == 1;
}
动态规划解法
/// Dynamic Programming
/// Time Complexity: O(len(nums) * O(sum(nums)))
/// Space Complexity: O(len(nums) * O(sum(nums)))
public boolean canPartition(int[] nums) {
int sum = 0;
for(int i = 0 ; i < nums.length ; i ++){
if(nums[i] <= 0)
throw new IllegalArgumentException("numbers in nums must be greater than zero.");
sum += nums[i];
}
if(sum % 2 == 1)
return false;
int n = nums.length;
int C = sum / 2;
boolean[] memo = new boolean[C + 1];
for(int i = 0 ; i <= C ; i ++)
memo[i] = (nums[0] == i);
for(int i = 1 ; i < n ; i ++)
for(int j = C; j >= nums[i] ; j --)
memo[j] = memo[j] || memo[j - nums[i]];
return memo[C];
}