一维前缀和和二维前缀和()

一、一维前缀和

这样,对于每个询问,只需要执行 sum[r]-sum[l-1]。输出原序列中从第l个数到第r个数的和的时间复杂度变成了O(1)。

代码实现:

#include<iostream>

using namespace std;

const int N = 100010;

int a[N], s[N];

int main()
{
	int n, m;
	scanf("%d%d", &n, &m);
	for (int i = 0; i <=n; i++) scanf("%d", &a[i]);
	 
	for (int i = 1; i < n; i++) s[i] = s[i - 1] + a[i];	//前缀和数组的初始化
	
	while (m--)
	{
		int l, r;
		scanf("%d%d", &l, &r);
		printf("%d\n", s[r] - s[l - 1]);		//计算前缀和
	}
	return 0;
}

二、二维前缀和

 代码实现:

#include<iostream>

const int N = 1010;

int n, m, q;

int a[N][N], s[N][N];

int main()
{
	scanf("%d%d%d", &n, &m, &q);
	for (int i = 1; i <= n; i++)		//读入题目给的数组a
		for (int j = 1; j <= m; j++)
			scanf("%d", &a[i][j]);

	for (int i = 1; i <= n; i++)		//计算前缀和数组
		for (int j = 1; j <= m; j++)
			s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j];

	while (q--)
	{
		int x1, y1, x2, y2;
		scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
		printf("%d\n", s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]);	//求子矩阵
	}
	return 0;
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值