一、一维前缀和
这样,对于每个询问,只需要执行 sum[r]-sum[l-1]。输出原序列中从第l个数到第r个数的和的时间复杂度变成了O(1)。
代码实现:
#include<iostream>
using namespace std;
const int N = 100010;
int a[N], s[N];
int main()
{
int n, m;
scanf("%d%d", &n, &m);
for (int i = 0; i <=n; i++) scanf("%d", &a[i]);
for (int i = 1; i < n; i++) s[i] = s[i - 1] + a[i]; //前缀和数组的初始化
while (m--)
{
int l, r;
scanf("%d%d", &l, &r);
printf("%d\n", s[r] - s[l - 1]); //计算前缀和
}
return 0;
}
二、二维前缀和
代码实现:
#include<iostream>
const int N = 1010;
int n, m, q;
int a[N][N], s[N][N];
int main()
{
scanf("%d%d%d", &n, &m, &q);
for (int i = 1; i <= n; i++) //读入题目给的数组a
for (int j = 1; j <= m; j++)
scanf("%d", &a[i][j]);
for (int i = 1; i <= n; i++) //计算前缀和数组
for (int j = 1; j <= m; j++)
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j];
while (q--)
{
int x1, y1, x2, y2;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
printf("%d\n", s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]); //求子矩阵
}
return 0;
}