作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO
联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬
学习必须往深处挖,挖的越深,基础越扎实!
阶段1、深入多线程
阶段2、深入多线程设计模式
阶段3、深入juc源码解析
码哥源码部分
码哥讲源码-原理源码篇【2024年最新大厂关于线程池使用的场景题】
码哥讲源码-原理源码篇【揭秘join方法的唤醒本质上决定于jvm的底层析构函数】
码哥源码-原理源码篇【Doug Lea为什么要将成员变量赋值给局部变量后再操作?】
码哥讲源码【谁再说Spring不支持多线程事务,你给我抽他!】
打脸系列【020-3小时讲解MESI协议和volatile之间的关系,那些将x86下的验证结果当作最终结果的水货们请闭嘴】
一、简介
消息队列大家应该不陌生,没接触过的可以先看下我的另一个专栏分布式基础系列。目前常见的开源分布式消息队列主要有下面几种:
特性 | ActiveMQ | RabbitMQ | RocketMQ | Kafka |
---|---|---|---|---|
单机吞吐量 | 万级 | 万级 | 10万级 | 10万级以上 |
topic数量 | / | / | topic达到千级时,吞吐量会小幅下降 | topic达到百级时,吞吐量会大幅下降 |
时效性 | 毫秒级 | 微秒级 | 毫秒级 | 毫秒级 |
可用性 | 高,主从架构 | 高,主从架构 | 非常高,数据分散集群架构 | 极高,数据分散集群架构 |
消息可靠性 | 有较低的概率丢失数据 | 有较低的概率丢失数据 | 经过参数配置,可以做到0丢失 | 经过参数配置,可以做到0丢失 |
框架开发语言 | Java | erlang | Java | Java |
优劣势 | 优势:非常成熟,功能完备,在业内大量的公司以及项目中都有应用;劣势:社区不活跃,版本迭代很慢,不适合大规模并发场景。 | 优势:自带管理界面非常好用,社区活跃,版本迭代快;劣势:吞吐量一般,erlang不利于研究源码。 | 优势:吞吐量非常高,适合大规模高并发应用,功能丰富,社区活跃;劣势:依赖阿里,一旦被抛弃,后续维护有风险 | 优势:吞吐量极高,可用性极高,社区活跃适合大规模高并发应用,社区活跃,适合大数据实时计算以及日志收集劣势:功能较单一 |
我们后续会针对RabbitMQ、RocketMQ、Kalfka这三种主流MQ作讲解,本章我们先来看下为什么要在我们的系统中引入分布式消息队列?
我们在自己的系统中引入消息队列,无非就是三个目的: 解耦 、 异步 、 削峰 。本文我们就通过三个示例来讲解下消息队列的这三项基本功能。
二、解耦
在分布式系统中,解耦的目的就是降低服务之间的直接依赖。我们来看下面这个系统。
2.1 解耦前
服务A是一个供数系统,会产生一些比较关键的数据,然后通过接口调用的方式把数据给服务B和服务C,最开始服务B和服务C所需的数据是相同的,所以一切都没什么问题:
一段时间后,服务C要求服务A做一些更改,原来送的数据有些地方需要做变更,所以服务A要重新调用一个服务C的专用接口:
又过了一段时间,来了服务D和服务E,也要求服务A针对它们需要的数据调用定制接口,同时服务B告诉服务A,以前那个通用接口不用了,因为服务B要下线了:
这种直连的方式导致服务A跟各种各种乱七八糟的服务紧耦合在一起,同时还要考虑超时问题、是不是要做重试机制,维护服务A的童鞋估计要崩溃。
2.2 解耦后
我们来看下如何通过消息中间件解耦:
上图中,在服务A和各个服务之间加入MQ,服务A产生的数据全量仍到MQ,并约定好格式,哪个服务需要数据就自己去MQ消费,然后自己处理。服务A也不用考虑什么接口调用超时、重试之类的问题了。
三、异步
消息队列的另一个重要功能就是异步化接口调用,我们考虑这样一种场景:用户通过浏览器发起一个请求,后台服务针对请求做处理,但事实上用户并不需要立刻得到该请求的响应,因为页面有其它地方可以让用户稍后查询请求的结果。这是一种典型的异步请求场景,我们现在看下同步的情况。
3.1 同步请求
下图中,服务A本地执行一些逻辑耗时20ms,然后依次同步调用服务B、服务C、服务D的接口,由于各个依赖服务本地执行的逻辑各不相同,在加上网络开销,一个请求的耗时接近1s。
一般来说,对于互联网应用,如果是涉及与用户直接交互的,基本都要在200ms内完成,所以显然这种同步调用方式在当前业务场景下是不可取的。
3.2 异步请求
我们再来看下如何通过消息中间件将请求异步化:
上图中,假设服务A发送3个消息耗时5ms,加上自身执行逻辑耗时20ms,那么25ms就可以将结果响应给用户。至于服务B、服务C、服务D,都是异步从消息队列中获取消息然后执行本地逻辑,从而大大减小了请求耗时,提升了用户体验。
四、削峰
消息队列最后一种常用的场景,就是在高峰时间进行削峰。
4.1 削峰前
一般的应用可能是下图这样的,在非高峰期时期,系统几乎没什么压力,但是一旦遇到高峰流量,请求都直接打到数据库,MySQL一般扛个每秒2000请求差不多快到极限了,再高就可能崩溃:
4.2 削峰
峰值流量持续的时间不会很久,一般最多1小时就差不多了,我们完全可以利用MQ存储高峰期的请求,然后系统A依然以自身最大能力去消费MQ(假设每秒消费2000个请求),这样即使在高峰期,系统也不会挂掉:
因为非峰值时期的流量一般是很低的,所以对于积压的消息,会在高峰期过后被慢慢消费掉。举个例子,假设每秒MQ积压3000条消息,那么1小时积压1000万条消息,这1000万条消息基本上1个小时就可以被系统A处理完。
五、总结
引入分布式消息队列后,会给系统带来很多好处,最主要的就是性能方面,但同时也会使系统的复杂性变高。一方面,MQ自身需要做到高可用,另一方面,多个系统通过MQ进行交互,如何保证数据一致性?(比如3.2中的系统A处理完后直接返回成功,系统B、C、D中的BC写库成功,但是D失败了,这时候数据就不一致了)我们后续章节,会针对使用消息队列过程中的一些核心问题进行分析讲解。