分布式进阶(一)——分布式框架之高性能:消息队列

作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO

联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬

学习必须往深处挖,挖的越深,基础越扎实!

阶段1、深入多线程

阶段2、深入多线程设计模式

阶段3、深入juc源码解析


阶段4、深入jdk其余源码解析


阶段5、深入jvm源码解析

 

码哥源码部分

码哥讲源码-原理源码篇【2024年最新大厂关于线程池使用的场景题】

码哥讲源码【炸雷啦!炸雷啦!黄光头他终于跑路啦!】

码哥讲源码-【jvm课程前置知识及c/c++调试环境搭建】

 

​​​​​​码哥讲源码-原理源码篇【揭秘join方法的唤醒本质上决定于jvm的底层析构函数】

码哥源码-原理源码篇【Doug Lea为什么要将成员变量赋值给局部变量后再操作?】

码哥讲源码【你水不是你的错,但是你胡说八道就是你不对了!】

码哥讲源码【谁再说Spring不支持多线程事务,你给我抽他!】

终结B站没人能讲清楚红黑树的历史,不服等你来踢馆!

打脸系列【020-3小时讲解MESI协议和volatile之间的关系,那些将x86下的验证结果当作最终结果的水货们请闭嘴】

 

一、简介

消息队列大家应该不陌生,没接触过的可以先看下我的另一个专栏分布式基础系列。目前常见的开源分布式消息队列主要有下面几种:

特性ActiveMQRabbitMQRocketMQKafka
单机吞吐量万级万级10万级10万级以上
topic数量//topic达到千级时,吞吐量会小幅下降topic达到百级时,吞吐量会大幅下降
时效性毫秒级微秒级毫秒级毫秒级
可用性高,主从架构高,主从架构非常高,数据分散集群架构极高,数据分散集群架构
消息可靠性有较低的概率丢失数据有较低的概率丢失数据经过参数配置,可以做到0丢失经过参数配置,可以做到0丢失
框架开发语言JavaerlangJavaJava
优劣势优势:非常成熟,功能完备,在业内大量的公司以及项目中都有应用;劣势:社区不活跃,版本迭代很慢,不适合大规模并发场景。优势:自带管理界面非常好用,社区活跃,版本迭代快;劣势:吞吐量一般,erlang不利于研究源码。优势:吞吐量非常高,适合大规模高并发应用,功能丰富,社区活跃;劣势:依赖阿里,一旦被抛弃,后续维护有风险优势:吞吐量极高,可用性极高,社区活跃适合大规模高并发应用,社区活跃,适合大数据实时计算以及日志收集劣势:功能较单一

我们后续会针对RabbitMQ、RocketMQ、Kalfka这三种主流MQ作讲解,本章我们先来看下为什么要在我们的系统中引入分布式消息队列?

我们在自己的系统中引入消息队列,无非就是三个目的: 解耦 、 异步 、 削峰 。本文我们就通过三个示例来讲解下消息队列的这三项基本功能。

二、解耦

在分布式系统中,解耦的目的就是降低服务之间的直接依赖。我们来看下面这个系统。

2.1 解耦前

服务A是一个供数系统,会产生一些比较关键的数据,然后通过接口调用的方式把数据给服务B和服务C,最开始服务B和服务C所需的数据是相同的,所以一切都没什么问题:

一段时间后,服务C要求服务A做一些更改,原来送的数据有些地方需要做变更,所以服务A要重新调用一个服务C的专用接口:

又过了一段时间,来了服务D和服务E,也要求服务A针对它们需要的数据调用定制接口,同时服务B告诉服务A,以前那个通用接口不用了,因为服务B要下线了:

这种直连的方式导致服务A跟各种各种乱七八糟的服务紧耦合在一起,同时还要考虑超时问题、是不是要做重试机制,维护服务A的童鞋估计要崩溃。

2.2 解耦后

我们来看下如何通过消息中间件解耦:

上图中,在服务A和各个服务之间加入MQ,服务A产生的数据全量仍到MQ,并约定好格式,哪个服务需要数据就自己去MQ消费,然后自己处理。服务A也不用考虑什么接口调用超时、重试之类的问题了。

三、异步

消息队列的另一个重要功能就是异步化接口调用,我们考虑这样一种场景:用户通过浏览器发起一个请求,后台服务针对请求做处理,但事实上用户并不需要立刻得到该请求的响应,因为页面有其它地方可以让用户稍后查询请求的结果。这是一种典型的异步请求场景,我们现在看下同步的情况。

3.1 同步请求

下图中,服务A本地执行一些逻辑耗时20ms,然后依次同步调用服务B、服务C、服务D的接口,由于各个依赖服务本地执行的逻辑各不相同,在加上网络开销,一个请求的耗时接近1s。

一般来说,对于互联网应用,如果是涉及与用户直接交互的,基本都要在200ms内完成,所以显然这种同步调用方式在当前业务场景下是不可取的。

3.2 异步请求

我们再来看下如何通过消息中间件将请求异步化:

上图中,假设服务A发送3个消息耗时5ms,加上自身执行逻辑耗时20ms,那么25ms就可以将结果响应给用户。至于服务B、服务C、服务D,都是异步从消息队列中获取消息然后执行本地逻辑,从而大大减小了请求耗时,提升了用户体验。

四、削峰

消息队列最后一种常用的场景,就是在高峰时间进行削峰。

4.1 削峰前

一般的应用可能是下图这样的,在非高峰期时期,系统几乎没什么压力,但是一旦遇到高峰流量,请求都直接打到数据库,MySQL一般扛个每秒2000请求差不多快到极限了,再高就可能崩溃:

4.2 削峰

峰值流量持续的时间不会很久,一般最多1小时就差不多了,我们完全可以利用MQ存储高峰期的请求,然后系统A依然以自身最大能力去消费MQ(假设每秒消费2000个请求),这样即使在高峰期,系统也不会挂掉:

因为非峰值时期的流量一般是很低的,所以对于积压的消息,会在高峰期过后被慢慢消费掉。举个例子,假设每秒MQ积压3000条消息,那么1小时积压1000万条消息,这1000万条消息基本上1个小时就可以被系统A处理完。

五、总结

引入分布式消息队列后,会给系统带来很多好处,最主要的就是性能方面,但同时也会使系统的复杂性变高。一方面,MQ自身需要做到高可用,另一方面,多个系统通过MQ进行交互,如何保证数据一致性?(比如3.2中的系统A处理完后直接返回成功,系统B、C、D中的BC写库成功,但是D失败了,这时候数据就不一致了)我们后续章节,会针对使用消息队列过程中的一些核心问题进行分析讲解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值