Spring Cloud Alibaba微服务实战五 - 限流熔断

作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO

联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬

学习必须往深处挖,挖的越深,基础越扎实!

阶段1、深入多线程

阶段2、深入多线程设计模式

阶段3、深入juc源码解析


阶段4、深入jdk其余源码解析


阶段5、深入jvm源码解析

码哥源码部分

码哥讲源码-原理源码篇【2024年最新大厂关于线程池使用的场景题】

码哥讲源码【炸雷啦!炸雷啦!黄光头他终于跑路啦!】

码哥讲源码-【jvm课程前置知识及c/c++调试环境搭建】

​​​​​​码哥讲源码-原理源码篇【揭秘join方法的唤醒本质上决定于jvm的底层析构函数】

码哥源码-原理源码篇【Doug Lea为什么要将成员变量赋值给局部变量后再操作?】

码哥讲源码【你水不是你的错,但是你胡说八道就是你不对了!】

码哥讲源码【谁再说Spring不支持多线程事务,你给我抽他!】

终结B站没人能讲清楚红黑树的历史,不服等你来踢馆!

打脸系列【020-3小时讲解MESI协议和volatile之间的关系,那些将x86下的验证结果当作最终结果的水货们请闭嘴】

导读:本篇作为SpringCloud Alibaba微服务实战系列的第五篇,主要内容是使用Sentinel给微服务加上限流熔断功能,防止异常情况拖垮应用服务。系列文章,欢迎持续关注。

简介

Sentinel是面向分布式服务框架的轻量级流量控制框架,主要以流量为切入点,从流量控制,熔断降级,系统负载保护等多个维度来维护系统的稳定性。在SpringCloud体系中,sentinel主要是为了替换原Hystrix的功能,与Hystrix相比,sentinel的隔离级别更加精细,提供的Dashboard可以在线更改限流熔断规则,而且使用也越加方便。要了解更多详细信息请移步至Sentinel官网。

基础准备

要使用Sentinel提供的限流熔断能力,需要先做如下准备:

  • 安装Sentinel 这部分内容我已经在第一期SpringCloud Alibaba微服务实战一 - 基础环境准备中提过,大家可以翻阅查看。
  • 引入Sentinel 在需要配置限流熔断服务的POM文件中引入Sentinel组件
    <!--Sentinel-->
    <dependency>
    	<groupId>org.springframework.cloud</groupId>
    	<artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
    </dependency>
  • 自定义资源@SentinelResource我们只需要在相关方法上加上@SentinelResource注解,让其可以成为sentinel识别的资源即可。如:
    @GetMapping("/account/getByCode/{accountCode}")
    @SentinelResource(value = "getByCode")
    public ResultData<AccountDTO> getByCode(@PathVariable(value = "accountCode") String accountCode){
    	log.info("get account detail,accountCode is :{}",accountCode);
    	AccountDTO accountDTO = accountService.selectByCode(accountCode);
    	return ResultData.success(accountDTO);
    }
  • 在配置文件中添加sentinel的服务端地址
    server:
      port: 8010
    spring:
      application:
        name: account-service
      cloud:
        nacos:
          discovery:
            server-addr: 192.168.0.107:8848/
        sentinel:
          transport:
          # sentinel服务端地址
            dashboard: 192.168.0.107:8858
          # 取消延迟加载
          eager: true

经过以上几步我们准备好了使用Sentinel的基础环境,接下来我们看看限流熔断的具体配置。

限流

概念说明

生产者accout-service是一个核心服务,我们通过压测得出服务的最大负载能力为60。如果某个时间account-service的请求数飙升达到了600,那服务肯定就直接gg了。所以为了保护我们的accout-service,我们会给它配置一个限流规则,如果每秒钟有超过60的请求那不好意思我直接丢掉不处理了,然后丢给消费者一个异常,想拖垮我,哼,没门!。

总而言之,限流是通过限制调用方对自己的调用,起到保护自己系统的效果。

限流配置

理想是丰满的,现实是骨感的。由于本人对Jmeter之类的压测工具不是很精通所以为了方便测试,我们就将accout-service的QPS单机阈值设置成5,如果每秒QPS超过5,直接丢弃。

这里的资源名就是我们使用@SentinelResource注解自定义的资源。

打开浏览器,快速刷新浏览器,当每秒请求数超过5时会看到如下错误:

在后端服务日志中你会看到如下的错误日志:

    2019-12-10 14:22:31,948 ERROR [dispatcherServlet]:175 - Servlet.service() for servlet [dispatcherServlet] in context with path [] threw exception [Request processing failed; nested exception is java.lang.reflect.UndeclaredThrowableException] with root cause
    com.alibaba.csp.sentinel.slots.block.flow.FlowException: null

不要慌,这说明我们的目的达到了,限流成功!

自定义异常

我们可以通过@SentinelResource中添加blockHandler参数,给其添加自定义异常方法。如:

    @GetMapping("/account/getByCode/{accountCode}")
    @SentinelResource(value = "getByCode",blockHandler = "handleException")
    public ResultData<AccountDTO> getByCode(@PathVariable(value = "accountCode") String accountCode){
    	log.info("get account detail,accountCode is :{}",accountCode);
    	AccountDTO accountDTO = accountService.selectByCode(accountCode);
    	return ResultData.success(accountDTO);
    }
    /**
     * 自定义异常策略
     * 返回值和参数要跟目标函数一样,参数可以追加BlockException
     */
    public ResultData<AccountDTO> handleException(String accountCode,BlockException exception){
    	log.info("flow exception{}",exception.getClass().getCanonicalName());
    	return ResultData.fail(900,"达到阈值了,不要再访问了!");
    }

注意,自定义的异常方法的参数和返回值要跟目标方法一样,参数可以追加BlockException

效果如下:

比之前的那个错误页优雅多了有木有!

持久化配置

由于Sentinel的配置默认是放在内存中的,每当应用重启或者sentinel重启都会丢失数据,我们这里使用Nacos作为配置中心持久化限流配置。

  • 修改pom文件,引入sentinel-datasource-nacos组件
    <dependency>
    	<groupId>com.alibaba.csp</groupId>
    	<artifactId>sentinel-datasource-nacos</artifactId>
    </dependency>
  • 修改application.yml,配置sentinel的数据源
    spring:
      cloud:
        sentinel:
          datasource:
            ds:
              nacos:
                server-addr: 10.0.10.48:8848
                data-id: ${spring.application.name}-sentinel
                group-id: DEFAULT_GROUP
                rule-type: flow
  • 在nacos中建立限流配置account-service-sentinel(配置格式设置成json)
    [
        {
            "resource": "getByCode",
            "limitApp": "default",
            "grade": 1,
            "count": 3,
            "strategy": 0,
            "controlBehavior": 0,
            "clusterMode": false
        }
    ]

可以看到上面配置规则是一个数组类型,数组中的每个对象是针对每一个保护资源的配置对象,每个对象中的属性解释如下:

resource:资源名,即限流规则的作用对象
limitApp:流控针对的调用来源,若为 default 则不区分调用来源
grade:限流阈值类型(QPS 或并发线程数);0代表根据并发数量来限流,1代表根据QPS来进行流量控制
count:限流阈值
strategy:调用关系限流策略
controlBehavior:流量控制效果(直接拒绝、Warm Up、匀速排队)
clusterMode:是否为集群模式

  • 进入sentinel查看dashboard,发现sentinel自动获取nacos的配置

  • 频繁刷新浏览器调用接口,验证接口是否正常限流

熔断

概念说明

消费者order-service需要先调用product-service获取具体的product,然后再处理其他的业务逻辑。但是这个product-service接口不是很稳定,经常抛出异常;或者是响应缓慢,导致order-service的响应变慢;如果置之不理,order-service可能会被product-service拖垮。这时候为了保护order-service,我们需要对product-service接口进行熔断。

image.png

一言以蔽之:熔断是通过限制自己对外部系统的调用, 起到节约响应时间、维护链路稳定的作用。

熔断配置

Sentinel中的熔断降级有三个降级策略:

  • RT(平均响应时间):当资源的平均响应时间超过阈值之后,资源进入准降级状态。接下来如果持续进入 5 个请求,它们的 RT 都持续超过这个阈值,那么在接下的时间窗口之内,对这个方法的调用都会自动抛出 DegradeException 异常。在下一个时间窗口到来时, 会接着再放入5个请求, 再重复上面的判断.
  • 异常比例 当资源的每秒异常总数占通过量的比值超过阈值之后,资源进入降级状态,即在接下的时间窗口之内,对这个方法的调用都会自动地抛出DegradeException异常。异常比率的阈值范围是 [0.0, 1.0],代表 0% - 100%。
  • 异常数 当资源近 1 分钟的异常数目超过阈值之后会进行熔断。

首先我们对原接口进行改造,让其直接抛出Runtimeexception

    @GetMapping("/product/getByCode/{productCode}")
    @SentinelResource(value = "/product/getByCode",fallback = "fallbackHandler")
    public ResultData<ProductDTO> getByCode(@PathVariable String productCode){
    	log.info("get product detail,productCode is :{}",productCode);
    	ProductDTO productDTO = productService.selectByCode(productCode);
    	throw new RuntimeException("error");
    //        return ResultData.success(productDTO);
    }

这里我们将product-service设置如下的熔断规则:

如果/product/getByCode的异常率超过50%,那么接下来2秒内直接触发熔断降级,默认情况会抛出DegradeException异常,如:

    2019-12-10 19:35:53,764 ERROR [dispatcherServlet]:175 - Servlet.service() for servlet [dispatcherServlet] in context with path [] threw exception [Request processing failed; nested exception is java.lang.reflect.UndeclaredThrowableException] with root cause
    com.alibaba.csp.sentinel.slots.block.degrade.DegradeException: null

自定义异常

自定义熔断异常跟限流异常类似,我们使用fallback属性指定自定义异常的方法,如:

    @SentinelResource(value = "/product/getByCode",fallback = "fallbackHandler")
    public ResultData<ProductDTO> getByCode(@PathVariable String productCode){
     ...
    }
    /**
     * 自定义熔断异常
     * 返回值和参数要跟目标函数一样
     */
    public ResultData<ProductDTO> fallbackHandler(String productCode){
    	return ResultData.fail(800,"服务被熔断了,不要调用!");
    }

注意,自定义的异常方法的参数和返回值要跟目标方法一样

效果如下:

持久化配置

  • 引入sentinel-datasource-nacos组件,跟限流一样配置即可
  • 修改application.yml,配置sentinel的数据源
    spring:
      cloud:
        sentinel:
          datasource:
            ds:
              nacos:
                server-addr: 192.168.0.106:8848
                data-id: ${spring.application.name}-sentinel-degrade
                group-id: DEFAULT_GROUP
                rule-type: degrade
  • 在nacos中建立配置文件product-service-sentinel-degrade,做如下配置
    [
        {
        "resource": "/product/getByCode",
        "count": 0.5,
        "grade": 1,
        "passCount": 0,
        "timeWindow": 2
      }
    ]

可以看到上面配置规则是一个数组类型,数组中的每个对象是针对每一个保护资源的配置对象,每个对象中的属性解释如下:

resource:资源名,即降级规则的作用对象
count:阈值
grade:降级模式 0:RT 1:异常比例 2:异常数
timeWindow:时间窗口(单位秒)

  • 进入sentinel查看dashboard,发现sentinel自动获取nacos的配置

血与泪

大家在使用sentinel过程中如果出现Failed to fetch metric from的错误,具体表现如下:

    Failed to fetch metric from <http://192.168.136.1:8719/metric?startTime=1563865044000&endTime=1563865050000&refetch=false>
     (ConnectionException: Connection refused: no further information)

这个时候你需要去检查下sentinel控制台的服务列表,确认是否跟你ip一致。(我之前是装过虚拟机,sentinel一直抓取的是我虚拟的ip,不知道为什么。。。)

如果发现监听的地址不对的话,可以在sentinel客户端配置中加入客户端ip配置

    spring:
      cloud:
        sentinel:
          transport:
            client-ip: 192.168.0.108

至此我们已经给我们的微服务加上了限流熔断保护,再也不用担心异常流量的冲击,下游系统不稳定导致自身服务不可用了。那么本期的“SpringCloud Alibaba微服务实战五 - 限流熔断”篇也就该结束啦,咱们下期有缘再见!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值