【无标题】

《LPFS: Learnable Polarizing Feature Selection for Click-Through Rate Prediction》是一篇关于点击率预测的论文。本文提出了一种新的特征选择方法——可学习极化特征选择(Learnable Polarizing Feature Selection, LPFS),该方法可以在保持模型准确率的同时大大减小模型的复杂度,提高模型的可解释性。

传统的特征选择方法通常是基于统计学方法或启发式规则,这些方法只能处理线性相关的特征,难以捕捉非线性关系。而LPFS方法则可以通过自适应学习选择最具有区分度的特征,同时充分考虑特征之间的相关性和非线性关系。

具体来说,LPFS方法将每个特征向量映射到一个极化向量上,并使用一个极化矩阵来计算特征之间的相关性。通过对极化矩阵进行训练,LPFS可以自适应地选择特征,并通过对特征的重要性进行可视化,增强了模型的可解释性。此外,该方法还可以在不损失预测准确率的情况下,大大减小模型的复杂度,提高了模型的效率。

实验结果表明,LPFS方法在各种不同的数据集上均能取得较好的预测准确率,并且可以大大减小模型的大小和训练时间,同时提高了模型的可解释性。该方法可以应用于各种点击率预测的场景,并具有很好的实际应用价值



 

摘要:

本文提出了一种名为“可学习极化特征选择(LPFS)”的特征选择方法,以解决现有特征选择方法无法考虑不同倾向性特征的问题。 LPFS将每个特征表示为两个子空间,即正面子空间和负面子空间,并学习一个嵌入器,该嵌入器将数据映射到这些子空间。 然后,LPFS使用极化比对函数选择特征,以选择正面和负面特征,这有助于选择具有不同倾向性的特征。 在多个数据集上的实验结果表明,LPFS相对于其他方法具有更好的特征选择性能和更高的预测性能。

介绍:

特征选择是指从给定特征集中选择最相关的特征,以提高机器学习模型的预测性能。 然而,现有的特征选择方法通常只考虑了特征的重要性,而未考虑不同特征之间的关系。在现实世界中,存在一些具有不同倾向性的特征,如男性和女性,年轻人和老年人等。忽略这些不同倾向性特征可能导致模型性能下降。为此,本文提出了LPFS方法,以考虑这些具有不同倾向性的特征。

方法:

LPFS的主要思想是将每个特征表示为两个子空间,即正面子空间和负面子空间。LPFS使用一个嵌入器将数据映射到这些子空间,该嵌入器学习将具有相似性质的数据映射到相似的子空间。然后,LPFS使用极化比对函数对每个特征进行极化比对,以选择正面和负面特征。对于具有不同倾向性的特征,极化比对函数会将它们映射到不同的子空间中。最后,LPFS通过交叉验证来选择最佳特征子集,并在测试集上进行评估。

实验结果:

本文在多个数据集上进行了实验,并将LPFS与其他特征选择方法进行了比较。结果表明,LPFS具有更好的特征选择性能和更高的预测性能。此外,本文还进行了对比实验,证明了LPFS方法的有效性。

结论:

本文提出了一种名为LPFS的特征选择方法,以解决现有特征选择方法无法考虑不同

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值