PPO系列1 - 强化学习、策略梯度的原理

强化学习基本概念

Agent根据上一步Environment给出的State和Reward,以及自己的内在策略,做出Action;

Action给到Environment,Environment给出State和Reward,给到Agent去做下一步Action;

该游戏中,State就是游戏画面,Reward就是吃的分、通关等奖励(或者被打死等惩罚),Action就是超级玛丽下一步的<上、下、左、右、静止>动作。Agent是超级玛丽。Environment是游戏机。

目标:学习到一个最优的策略,通过该策略下走的Action序列,拿到尽可能多的Reward总和

每一步的Action,要做长远考虑,不能只看这一步的Reward,而要尽量使今后的长远Reward之和,也就是Return,最大化。

数学期望(概率加权平均):

强化学习的目标:(2种说法)

数学表达式:

\theta:学习到的策略(模型)

\tau:在该策略下采样得到的轨迹Trajectory

R(\tau ): 该轨迹的Return(Reward之和)

P_{\theta }(\tau ): 在该策略下采样得到该轨迹的概率

策略梯度的推导:

要最大化E,就要求出\theta的梯度,沿着梯度方向对\theta进行更新,可使E最大化。

去掉梯度求导,得到:

即对上式进行最大化。

直观含义:

当R(即Return)>0时,让每个状态s下生成这个action a的概率尽量增大。

当R(即Return)<0时,让每个状态s下生成这个action a的概率尽量减小。

超级玛丽的例子:

定义loss函数:(就是把最大化上式改成最小化下式)

游戏画面是s,作为神经网络的输入;超级玛丽的动作是a,作为神经网络的分类输出;

使用上面的神经网络,玩N次游戏,即采样得到N条轨迹,每条轨迹对应一个Return R:

对每条轨迹,有了R,就可以计算每一步的梯度了;所有轨迹的所有步的梯度,累加起来,更新模型:

On Policy:采集数据的模型,和训练的策略模型,是同一个模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值