acwing 2.01背包问题

题目:背包问题

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N, V≤1000
0<vV, Wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

8

思路:这是一个典型的动态规划问题

题解代码

解一:二维求解

(1)状态f[i][j]定义:前 ii 个物品,背包容量 jj 下的最优解(最大价值):

当前的状态依赖于之前的状态,可以理解为从初始状态f[0][0] = 0开始决策,有 N件物品,则需要 N 次决 策,每一次对第 i 件物品的决策,状态f[i][j]不断由之前的状态更新而来。
(2)当前背包容量不够(j < v[i]),没得选,因此前 i 个物品最优解即为前 i−1个物品最优解:

对应代码:f[i][j] = f[i - 1][j]
(3)当前背包容量够,可以选,因此需要决策选与不选第 i 个物品:
选:f[i][j] = f[i - 1][j - v[i]] + w[i]
不选:f[i][j] = f[i - 1][j]
我们的决策是如何取到最大价值,因此以上两种情况取 max()
代码如下:

#include<iostream>

using namespace std;

const int MAXN = 1005;
int v[MAXN];
int w[MAXN];
int f[MAXN][MAXN];

int main()
{
    int n, m;
    cin >> n >> m;
    for(int i = 1; i <=n; i++){
        cin >> v[i] >> w[i];
    }
    
    for(int i = 1; i <=n; i++)
        for(int j = 1; j <=m; j++){
            if(j < v[i])
                f[i][j] = f[i - 1][j];
            else 
                f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
        }
    cout << f[n][m] << endl;
    
    return 0;
}

解二:一维

将状态f[i][j]优化到一维f[j],实际上只需要做一个等价变形。

为什么可以这样变形呢?我们定义的状态f[i][j]可以求得任意合法的ij最优解,但题目只需要求得最终状态f[n][m],因此我们只需要一维的空间来更新状态。

(1)状态f[j]定义:N 件物品,背包容量j下的最优解。

(2)注意枚举背包容量j必须从m开始。

(3)为什么一维情况下枚举背包容量需要逆序?在二维情况下,状态f[i][j]是由上一轮i - 1的状态得来的,f[i][j]f[i - 1][j]是独立的。而优化到一维后,如果我们还是正序,则有f[较小体积]更新到f[较大体积],则有可能本应该用第i-1轮的状态却用的是第i轮的状态。

(4)例如,一维状态第i轮对体积为 3 的物品进行决策,则f[7]f[4]更新而来,这里的f[4]正确应该是f[i - 1][4],但从小到大枚举j这里的f[4]在第i轮计算却变成了f[i][4]。当逆序枚举背包容量j时,我们求f[7]同样由f[4]更新,但由于是逆序,这里的f[4]还没有在第i轮计算,所以此时实际计算的f[4]仍然是f[i - 1][4]

(5)简单来说,一维情况正序更新状态f[j]需要用到前面计算的状态已经被「污染」,逆序则不会有这样的问题。

状态转移方程为:f[j] = max(f[j], f[j - v[i]] + w[i]

#include<iostream>

using namespace std;

const int MAXN = 1005;
int v[MAXN];
int w[MAXN];
int f[MAXN];


int main(){
    int n, m;
    cin >> n >> m;
    for(int i = 1; i <= n; i++){
        cin >> v[i] >> w[i];
    }
    for(int i = 1; i <=n; i++)
        for(int j = m; j >= v[i]; j--)
            f[j] = max(f[j], f[j - v[i]] + w[i]);
    cout << f[m]<< endl;
    
    return 0;
            
}

解三:优化输入

我们注意到在处理数据时,我们是一个物品一个物品,一个一个体积的枚举。

因此我们可以不必开两个数组记录体积和价值,而是边输入边处理。

#include<iostream>

using namespace std;

const int MAXN = 1005;
int v;
int w;
int f[MAXN];

int main()
{
    int n, m;
    cin >> n >> m;
    for(int i = 1; i <=n; i++){
        cin >> v >> w;
        for(int j = m; j >=v; j--)
            f[j] = max(f[j], f[j - v] + w);
    }
    
    cout << f[m] << endl;
    
    return 0;
}

算法小白,以上为个人思路分享,希望可以帮到你,你如果有更好的方法,欢迎评论探讨,我们共同进步。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值