Codeforces Round 919 (Div2 A~D)补题题解

Codeforces Round 919 (Div2)

Problem - A - Codeforces

题目翻译:

亚历克斯正在解决一个问题。他对整数 k k k 的值有 n n n 个约束。有三种类型的约束:

  1. k k k 必须大于或等于某个整数 x x x
  2. k k k 必须小于或等于某个整数 x x x
  3. k k k 必须不等于某个整数 x x x

帮助亚历克斯找出满足所有 n n n 约束条件的整数 k k k 的个数。保证答案是有限的(存在至少一个 1 1 1 类型的约束和至少一个 2 2 2 类型的约束)。同时,保证没有两个约束条件是完全相同的

比较简单,直接上代码:

import sys

def solve():
    n = int(sys.stdin.readline())
    l,r = 1,int(1e9)
    ls = []
    for _ in range(n):
        a,x = map(int, sys.stdin.readline().split())
        if a == 3: ls.append(x)
        elif a == 2: r = min(r,x)
        else: l = max(x,l)
    if r < l:
        print(0)
        return
    ans = r-l+1
    for x in ls:
        if x <= r and x >= l: ans -= 1
    print(ans)
    # print(ls)
    # print(l,r)

for _ in range(int(input())):
    solve()

Problem - B - Codeforces

题目翻译:

爱丽丝和鲍勃正在玩一个游戏。他们有一个数组 a 1 , a 2 , … , a n a_1, a_2,\ldots,a_n a1,a2,,an 。游戏包括两个步骤:

  • 首先,爱丽丝将从数组中移除最多 k k k 个元素。
  • 第二步,鲍勃将数组中最多个 x x x 元素乘以 − 1 -1 1

爱丽丝希望最大化数组元素之和,而鲍勃希望最小化数组元素之和。如果双方都以最佳方式进行游戏,请找出游戏结束后数组元素的总和。

题目分析:

这是一个博弈的问题,我们很容易想到 B o b Bob Bob的最优做法就是把还在数组中的最大的 x x x个数乘-1.

那么对于 A l i c e Alice Alice 肯定也是考虑去掉最大的,不然无意义,那是否意味着去掉越多越好呢,显然不是,反例如下: k = 5 , x = 2 k = 5, x=2 k=5,x=2 l s = [ 1000 , 10 , 9 , 8 , 7 ] ls=[1000, 10, 9, 8, 7] ls=[1000,10,9,8,7]去掉1000显然比去掉 1000 , 10 1000,10 100010更优.

那我们考虑维护一个前缀和,暴力枚举每一个前缀,再取最优解即可。时间复杂度为 O ( n log ⁡ n + n ) O(n\log{n}+n) O(nlogn+n).

python3 code:

import sys

def solve():
    n,k,x = map(int, sys.stdin.readline().split())
    ls = list(map(int, sys.stdin.readline().split()))
    ls.sort(reverse=True)
    ls.append(0)

    res,idx = 0,x
    tmp = 0
    for i in range(k):
        if idx < n:
            tmp += ls[i]-2*ls[idx]
            res = max(tmp,res)
            idx += 1
        else:
            tmp += ls[i]
            res = max(tmp,res)
    for i in range(x):
        ls[i] = -ls[i]
    print(sum(ls)+res)

for i in range(int(input())):
    solve()

Problem - C - Codeforces

题目翻译:

艾伦有一个数组 a 1 , a 2 , … , a n a_1, a_2,\ldots,a_n a1,a2,,an 。对于每个是 n n n 除数的正整数 k k k ,艾伦都会做如下运算:

  • 他将数组分割成长度为 k k k n k \frac{n}{k} kn 个互不相交的子数组。换句话说,他将数组划分为以下子数组:
    [ a 1 , a 2 , . . . , a k ] , [ a k + 1 , a k + 2 , . . . , a 2 k ] , . . . , [ a n − k + 1 , a n − k + 2 , . . , a n ] [a_1,a_2,...,a_k],[a_{k+1}, a_{k+2},...,a_{2k}],...,[a_{n-k+1},a_{n-k+2},..,a_{n}] [a1,a2,...,ak],[ak+1,ak+2,...,a2k],...,[ank+1,ank+2,..,an]

  • 如果存在某个正整数 m m m ( m ≥ 2 m \geq 2 m2 ),使得他将数组中的每个元素除以 m m m 后的余数都替换为该元素,则所有子数组都相同,则艾伦得一分。

帮助艾伦找出他将获得的分数。

题目分析及思路历程:

很有意思的一道题,我们来捋一遍思路。

1、首先,看题目是我们得先知道 n k \frac{n}{k} kn个子区间相同,子区间之间应该满足什么?我们不防先想想当每个子区间都是一个数的时候,它们在哪个 m m m 下相等(modulo m m m )?

我们很容易想到两个数 m o d m mod m modm同余意味着他们的差 d e l t a delta delta 满足 m ∣ d e l t a m|delta mdelta .也就是说m被差整除。

2、这时候我们再来考虑一下怎么解决区间的问题,由上述说明可知不同区间 m o d    m \mod m modm相同,当且仅当对应位置上的数之间的差值都能被 m m m 整除,这就是差值 g c d gcd gcd

3、我们可以遍历所有可能的 k k k ( k k k n n n 的整除数),并求解每个 k k k 以得到答案,对于每一个 k k k我们可以通过一个 c h e c k check check 函数返回是否存在这么一个 m m m。这样做的时间复杂度为 O ( ( n + log ⁡ n ) ⋅ max divisors of n ) O((n + \log n) \cdot \text{max divisors of n}) O((n+logn)max divisors of n) 。请注意,每次遍历数组都需要花费 n + log ⁡ n n + \log n n+logn 时间,因为 g c d gcd gcd 在每一点上要么减半,要么保持不变。

python3 code:

import sys
from math import sqrt

def gcd(a,b):
    while b:
        a,b = b,a%b
    return a

def check(x):
    if x == n: return 1
    g = abs(ls[1]-ls[x+1])
    for i in range(1,x+1):
        for j in range(i+x,n+1,x):
            g = gcd(g,abs(ls[i]-ls[j]))
    if g == 1: return 0
    else: return 1

for _ in range(int(input())):
    n = int(sys.stdin.readline())
    ls = [0]+list(map(int, sys.stdin.readline().split()))
    ans = 0
    for i in range(1,int(sqrt(n))+1):
        if n % i == 0:
            if check(i): ans += 1
            if i != n // i:
                if check(n // i): ans += 1
    print(ans)

Problem - D - Codeforces

本题参考官方题解,提供 Python3 实现

题目翻译

杰登有一个数组 a a a ,最初是空的。他必须按照给定的顺序执行两种类型的 n n n 操作。

  1. 贾登将一个整数 x x x ( 1 ≤ x ≤ n 1 \leq x \leq n 1xn ) 追加到数组 a a a 的末尾。
  2. 杰登将数组 a a a x x x 个副本追加到数组 a a a 的末尾。换句话说,数组 a a a 变成了 [ a , a , … , a ⏟ x ] [a,\underbrace{a,\ldots,a}_{x}] [a,x a,,a] 。可以保证的是,在此之前他至少进行过一次第一种类型的操作。

杰登有 q q q 个查询。对于每个查询,你必须告诉他数组 a a a 中的 k k k 个元素。数组的元素从 1 1 1 开始编号。

输入

每个测试由多个测试用例组成。第一行包含一个整数 t t t ( 1 ≤ t ≤ 5000 1 \leq t \leq 5000 1t5000 ) - 测试用例的个数。测试用例说明如下。

每个测试用例的第一行包含两个整数 n n n q q q ( 1 ≤ n , q ≤ 1 0 5 1 \leq n, q \leq 10^5 1n,q105 )–操作次数和查询次数。

接下来的 n n n 行描述操作。每行包含两个整数 b b b x x x ( b ∈ 1 , 2 b \in {1, 2} b1,2 ),其中 b b b 表示操作类型。如果是 b = 1 b=1 b=1 ,则 x x x }( 1 ≤ x ≤ n 1 \leq x \leq n 1xn ) 是杰登追加到数组末尾的整数。如果是 b = 2 b=2 b=2 ,那么 x x x ( 1 ≤ x ≤ 1 0 9 1 \leq x \leq 10^9 1x109 ) 是杰登追加到数组末尾的份数。

每个测试用例的下一行包含 q q q 个整数 k 1 , k 2 , … , k q k_1, k_2, \ldots, k_q k1,k2,,kq ( 1 ≤ k i ≤ min ⁡ ( 1 0 18 , c ) 1 \leq k_i \leq \min(10^{18}, c) 1kimin(1018,c) 表示查询,其中 c c c 是完成所有 n n n 操作后的数组大小。

保证所有测试用例的 n n n q q q 之和不超过 1 0 5 10^5 105

输出

对于每个测试用例,输出 q q q 个整数–杰登询问的答案。

题目解析及思路历程:

这显然是一个类似循环节的问题,我们的关键就是怎么追溯到处理第 k k k个数的操作

我们来看一个追溯的例子:

[ l 1 , l 2 , . . . l x ] ⏟ length  x [ l 1 , l 2 , . . . l x ] ⏟ length  x [ l 1 , l 2 , . . . l x ] ⏟ length  x . . . [ l 1 , l2 , . . . l x ] ⏟ length  x \underbrace{[l_1, l_2,...l_{x}]}_{\text{length } x} \underbrace{[l_1, l_2,...l_{x}]}_{\text{length } x} \underbrace{[l_1, l_2,...l_{x}]}_{\text{length } x} ... \underbrace{[l_1, \textbf{l2},...l_{x}]}_{\text{length } x} length x [l1,l2,...lx]length x [l1,l2,...lx]length x [l1,l2,...lx]...length x [l1,l2,...lx]

假设第 k k k 个元素是加粗的 l2 \textbf{l2} l2 。找到 k k k-th元素等同于找到( k   m o d   x k \bmod x kmodx )-th元素(除非 k   m o d   x k \bmod x kmodx 0 0 0 )。

之后,让我们预处理一些值:

l s t i = last element after performing the first i operations lst_i=\text{last element after performing the first i operations} lsti=last element after performing the first i operations

d p i = number of elements after the first i operations dp_i=\text{number of elements after the first i operations} dpi=number of elements after the first i operations

现在,让我们试着回答某个查询 k k k 。如果有 d p i = k dp_i=k dpi=k ,那么答案就是 l s t i lst_i lsti

否则,让我们找出 d p i > k dp_i \gt k dpi>k 的第一个 i i i 。这个 i i i 将是一个重复操作,我们的答案将位于其中一个重复操作中。此时我们的列表如下

[ l 1 , l 2 , . . . l d p i − 1 ] ⏟ length  d p i − 1 [ l 1 , l 2 , . . . l d p i − 1 ] ⏟ length  d p i − 1 [ l 1 , l 2 , . . . l d p i − 1 ] ⏟ length  d p i − 1 . . . [ l 1 , l2 , . . . l d p i − 1 ] ⏟ length  d p i − 1 \underbrace{[l_1, l_2,...l_{dp_{i-1}}]}_{\text{length } dp_{i-1}} \underbrace{[l_1, l_2,...l_{dp_{i-1}}]}_{\text{length } dp_{i-1}}\underbrace{[l_1, l_2,...l_{dp_{i-1}}]}_{\text{length } dp_{i-1}}... \underbrace{[l_1, \textbf{l2},...l_{dp_{i-1}}]}_{\text{length } dp_{i-1}} length dpi1 [l1,l2,...ldpi1]length dpi1 [l1,l2,...ldpi1]length dpi1 [l1,l2,...ldpi1]...length dpi1 [l1,l2,...ldpi1]

k k k -th元素成为最后一次重复中加粗的 l2 \textbf{l2} l2 。正如你所看到的,找到 k k k -元素等同于找到 ( k   m o d   d p i − 1 ) (k \bmod dp_{i-1}) (kmoddpi1) -th元素。因此,我们应该做 k : = k   m o d   d p i − 1 k:=k \bmod dp_{i-1} k:=kmoddpi1 ,然后重复!但还有一种情况!如果是 k ≡ 0 ( m o d d p i − 1 ) k \equiv 0 \pmod {dp_{i-1}} k0(moddpi1) ,那么答案就是 l s t i − 1 lst_{i-1} lsti1

此时我们有两种方法来解决这个问题:

方法 1

注意,在对第二种类型进行 log ⁡ ( max ⁡ k ) \log{(\max{k})} log(maxk) 次操作后,元素数将超过 max ⁡ k \max{k} maxk 。因此,我们只需关注第二种类型的前 log ⁡ ( max ⁡ k ) \log{(\max{k})} log(maxk) 次操作。因此,反向遍历第二种类型的 log ⁡ ( max ⁡ k ) \log{(\max{k})} log(maxk) 次操作,并执行上述案例。这将导致 O ( n + q log ⁡ ( max ⁡ k ) ) O(n+q\log{(\max{k})}) O(n+qlog(maxk)) 解或 O ( n + q ( log ⁡ ( max ⁡ k ) + log ⁡ n ) ) O(n+q(\log{(\max{k})}+\log n)) O(n+q(log(maxk)+logn)) 解,具体取决于实现细节。

方法 2

观察 k : = k   m o d   d p i − 1 k:=k \bmod dp_{i-1} k:=kmoddpi1 可以将 k k k 减少至少一半。如果我们重复二分查找第一个 i i i ,即 d p i ≥ k dp_i \geq k dpik ,然后执行 k : = k   m o d   d p i − 1 k:=k \bmod dp_{i-1} k:=kmoddpi1 (如果是其他情况之一,则停止),那么每次查询将耗时 O ( log ⁡ n log ⁡ k ) O(\log n\log k) O(lognlogk) ,因此总时间复杂度为 O ( n + q log ⁡ n log ⁡ ( max ⁡ k ) ) O(n+q\log n\log {(\max{k})}) O(n+qlognlog(maxk))

python3 code(方法二):

import sys

input =  sys.stdin.readline

for _ in range(int(input())):
    n,q = map(int, input().split())
    lst,dp = [0],[0]
    for i in range(1,n+1):
        b,x = map(int, input().split())
        if dp[-1] > 1e18: continue
        if b == 1:
            lst.append(x)
            dp.append(dp[-1]+1)
        else:
            lst.append(lst[-1])
            dp.append(dp[-1]*(x+1) if (x+1) <= 1e18/dp[i-1] else 2e18)

    ls = list(map(int,input().split()))
    ans = [0]*(q)
    for i in range(q):
        k = ls[i]
        while True:
            l, r = 0, len(dp)
            while l < r:
                mid = (l + r) // 2
                if mid >= len(dp) or dp[mid] >= k: r = mid
                else: l = mid + 1
            if dp[r] == k:
                ans[i] = lst[r]
                break
            elif k % dp[r-1] == 0:
                ans[i] = lst[r-1]
                break
            k %= dp[r-1]
    print(*ans)
  • 20
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

smile是对你的礼貌~@济南大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值