ACM: uva 10253 - Series-Parallel…

Series-Parallel Networks 

In this problem you are expected to count two-terminal series-parallel networks. These are electric networks considered topologically or geometrically, that is, without the electrical properties of the elements connected. One of the two terminals can be considered as the source and the other as the sink.

 

A two-terminal network will be considered series-parallel if it can be obtained iteratively in the following way:

 

      A single edge is two-terminal series-parallel.

      If G1 and G2 are two-terminal series-parallel, so is the network obtained by identifying the sources and sinks, respectively (parallel composition).

      If G1 and G2 are two-terminal series-parallel, so is the network obtained by identifying the sink of G1 with the source of G2 (series composition).

 

Note here that in a series-parallel network two nodes can be connected by multiple edges. Moreover, networks are regarded as equivalent, not only topologically, but also when interchange of elements in series brings them into congruence; otherwise stated, series interchange is an equivalence operation. For example, the following three networks are equivalent:

 ACM: <wbr>uva <wbr>10253 <wbr>- <wbr>Series-Parallel <wbr>Networks

 

 

Similarly, parallel interchange is also an equivalence operation. For example, the following three networks are also equivalent:

 ACM: <wbr>uva <wbr>10253 <wbr>- <wbr>Series-Parallel <wbr>Networks

Now, given a number N, you are expected to count the number of two-terminal series parallel networks containing exactly Nedges. For example, for N = 4, there are exactly 10 series-parallel networks as shown below:

 ACM: <wbr>uva <wbr>10253 <wbr>- <wbr>Series-Parallel <wbr>Networks

 

 

Input

Each line of the input file contains an integer N (1 £ N £ 30) specifying the number of edges in the network.

A line containing a zero for N terminates the input and this input need not be considered.

 

Output

For each N in the input file print a line containing the number of two-terminal series-parallel networks that can be obtained using exactly N edges.

 

Sample Input

1

4

15

0

 

Sample Output

1

10

1399068

 

题意: 给定一个有n条边的串并联网络, 问有多少种可能.

 

解题思路:

      1. 每个串并联网络可以看成一棵树, 每次都可以将一个串并联分解成更加简单的串/并联网络. 并且

         把它们看成一个节点. 假设一个并联节点为根, 第二层的所有非叶子节点都是串联节点, 第三层

         的非叶子节点就是并联节点, 所有, 总是将复杂的网络拆分成相对简单的串/并联网络.

         即: 设f(n)表示共n个叶子, 并且每个非叶子节点至少有两个子节点的树的数目.

      2. 题目给出, 子节点之间位置是无关的. 书上给出第一种解法是枚举n的所有整数划分, 问题变成

         若干正整数之和的形式, 其中各个加数按从小到大排列.

         例如 5个叶子的子树, 划分情况有:

         (1,1,1,1,1), (1,1,1,2), (1,1,3), (1,4), (1,2,2), (2,3), (5);

         最后, 每棵子树之间是相互独立, 并且相同叶子节点数量的看成同一种元素, 问题变成可重复选择

         的组合问题: C(n+k-1, k);

      3. 书上给出的第二种高效解法. 设dp[i][j]表示每棵子树最多包含i个叶子, 一共有j个叶子的方案数.

         有f(n) = dp[n-1][n];

         状态方程: dp[i][j] = sum( C(f(i)+p-1, p)*dp[i-1][j-p*i] | p>=0, p*i<=j );

 

代码解法一:

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
#define MAX 33
typedef long long ll;

int n;
ll dp[MAX];
int g[MAX];

inline int min(int a, int b)
{
 return a < b ? a : b;
}

ll C(ll n, ll m)
{
 double ans = 1;
 for(int i = 0; i < m; ++i)
  ans *= n-i;
 for(int j = 1; j <= m; ++j)
  ans /= j;
 return (ll) (ans+0.5);
}

void DP(int s, int res, int cur)
{
 if(res == 0)
 {
  ll temp = 1;
  for(int i = 1; i <= cur-1; ++i)
   temp *= C(dp[i]+g[i]-1, g[i]);
  dp[cur] += temp;
  return ;
 }

 int size = min(res, cur-1);
 for(int i = s; i <= size; ++i)
 {
  g[i]++;
  DP(i, res-i, cur);
  g[i]--;
 }
}

void init()
{
 memset(g, 0, sizeof(g));
 memset(dp, 0, sizeof(dp));
 dp[1] = 1;
 for(int i = 2; i <= 30; ++i)
  DP(1, i, i);
}

int main()
{
 freopen("input.txt", "r", stdin);
 init();
 while(scanf("%d", &n) != EOF)
 {
  if(n == 0) break;
  printf("%lld\n", n == 1 ? 1 : 2*dp[n]);
 }

 return 0;
}

 

解法二:

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
#define MAX 33
typedef long long ll;

int n;
ll dp[MAX][MAX], f[MAX];

ll C(ll n, ll m)
{
 double ans = 1;
 for(int i = 0; i < m; ++i)
  ans *= (n-i);
 for(int j = 0; j < m; ++j)
  ans /= (j+1);
 return (ll) (ans+0.5);
}

void init()
{
 int i, j;
 memset(dp, 0, sizeof(dp));
 memset(f, 0, sizeof(f));
 f[1] = 1;
 for(i = 0; i <= 30; ++i) dp[i][0] = 1;
 for(i = 1; i <= 30; ++i)
 {
  dp[i][1] = 1;
  dp[0][i] = 0;
 }

 for(i = 1; i <= 30; ++i)
 {
  for(j = 2; j <= 30; ++j)
  {
   dp[i][j] = 0;
   for(int p = 0; j-p*i >= 0; ++p)
   {
    dp[i][j] += C(f[i]+p-1, p)*dp[i-1][j-p*i];
   }
  }
  f[i+1] = dp[i][i+1];
 }
}

int main()
{
// freopen("input.txt", "r", stdin);
 init();
 while(scanf("%d", &n) != EOF)
 {
  if(n == 0) break;
  printf("%lld\n", n == 1 ? 1 : 2*f[n]);
 }

 return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值