人工智能——多臂老虎机问题
R为奖励概率分布,拉动每一根拉杆的动作a都对应一个奖励概率分布R(r|a),不同拉杆的奖励分布通常是不同的。本次以随机生成了一个6臂老虎机,获奖概率最大的拉杆设置为1号为例,然后可以当ϵ为0.01时的5000次后其累计懊悔图像,通过图像可以发现,在经历了开始的一小段时间后,ϵ-贪婪算法的累积懊悔几乎是线性增长的。本次实验使用ϵ-贪心算法解决多臂老虎机问题,去思考了其表现方式,累积懊悔分析等等,深度学习了强化学习相关概念,了解探索与利用的平衡策略,运用强化学习解决问题,总体感觉还是不错的。
原创
2023-06-25 23:16:26 ·
611 阅读 ·
1 评论