人工智能——多臂老虎机问题

一、实验目的与要求

实验目的:

1.熟悉强化学习相关概念;

2.了解表格解决算法;

3.了解探索与利用的平衡策略,运用强化学习解决问题;

二、实验内容与方法

实验内容(三选一):

1. 使用贪心算法和ϵ-贪心算法解决多臂老虎机问题;

2. 使用价值迭代算法完

### 老虎机算法在Java中的实现 老虎机问题是强化学习领域的一个经典问题,旨在通过一系列试验找到具有最高回报率的动作。一种常见的解决策略是ε-greedy方法,在该方法中,大部分时间会选择当前估计价值最高的动作(即贪婪选择),但在一小部分时间内会随机选取其他动作来探索可能更好的选项[^3]。 下面是一个简单的基于ε-greedy策略的老虎机算法的Java实现: ```java import java.util.Random; public class EpsilonGreedyBandit { private final int numArms; private double[] qValues; // Estimated values for each arm. private Random randomGenerator; private static final double epsilon = 0.1; // Exploration rate. public EpsilonGreedyBandit(int numberOfArms) { this.numArms = numberOfArms; reset(); randomGenerator = new Random(System.currentTimeMillis()); } /** * Resets the agent's knowledge about arms' rewards. */ public void reset() { qValues = new double[numArms]; for (int i = 0; i < numArms; ++i) { qValues[i] = 0.0; } } /** * Selects an action based on current estimates and exploration policy. * * @return Index of selected arm/action. */ public int selectAction() { if (randomGenerator.nextDouble() > epsilon) { // Exploit learned values. return exploit(); } else { // Explore other options. return explore(); } } private int exploit() { int bestArmIndex = 0; for (int i = 1; i < numArms; ++i) { if (qValues[i] > qValues[bestArmIndex]) { bestArmIndex = i; } } return bestArmIndex; } private int explore() { return randomGenerator.nextInt(numArms); } /** * Updates estimate after receiving reward from environment. * * @param chosenArm Arm that was pulled. * @param reward Reward received from pulling given arm. */ public void updateEstimate(int chosenArm, double reward) { qValues[chosenArm] += 0.1 * (reward - qValues[chosenArm]); // Using fixed step-size alpha=0.1. } } ``` 此代码片段展示了如何创建一个老虎机模拟器类`EpsilonGreedyBandit`,它实现了基本的ε-greedy行为模式。在这个例子中,使用了一个固定的学习速率α=0.1来进行奖励值的更新操作[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

smile_xiong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值