ORM 技术确实简化了基础 CRUD 操作,但面对复杂计算时也有很多局限性。Hibernate 的 HQL 能力明显不足,难以实现动态列运算和多层关联;JOOQ 通过 DSL 提升了灵活性,但分组计算需要多层嵌套,代码量远超原生 SQL。
esProc SPL 则像是个数据计算的“外挂”!写个多层 JOIN 加动态条件,以前用 JOOQ 得在 Java 里拼半小时的链式调用,现在 SPL 脚本几行搞定,语法比 SQL 还直观。
比如统计 "部门销售前 3 名",用 SQL 也要嵌套一下:
SELECT dept, name FROM (
SELECT dept, name, RANK() OVER (PARTITION BY dept ORDER BY sales DESC) as rank
FROM employee
) WHERE rank <=3
而 SPL 只需一行即可实现:
employee.groups(dept; top(-3, sales))
SPL 还支持动态数据结构。不用预定义实体类,随时在脚本里动态加字段:Orders.derive(Amount*0.1:tax, Amount+tax:total_amount)
,不像 JOOQ 还得预先定义。实施各类计算写法像 SQL 一样简单,像过滤条件直接写Orders.select(amount>1000 && like(client,"*s*"))
,字段名裸奔不用带对象前缀,JOOQ 那套ORDERS.AMOUNT.gt(1000)
明显相形见绌了。
实现跨库混合分析(比如 MySQL 用户数据 +Elasticsearch 日志)时,以前得写 ETL 脚本导数据,现在用 SPL 直接开搞:
A | |
1 | =users=mysql.query("SELECT * FROM employees") |
2 | =es_open("192.168.3.100:9200","user":"un1234") |
3 | =logs=es_get(A2,"/log/server_logs") |
4 | =join(users:usr,id, logs:logs,user_id) |
5 | =A4.groups(usr.dept; avg(logs.response_time)) |
不用导数据、不用建中间表,ORM 这时候只能在旁边干瞪眼!
ORM 更适合做一些简单的任务,复杂计算、跨源、动态逻辑这些,可以统统甩给 SPL。什么实时风控、动态报表、物联网流处理都不在话下。SPL 的游标机制还能边读边算不爆内存,语法简洁代码灵活。不信用 JOOQ 处理 Kafka 流数据试试,光是 Java 那套线程模型就能把人逼疯,而 SPL 直接kafka_open().kafka_poll@c().groups(hour(time);avg(value))
实时聚合,差距就像五菱宏光和特斯拉!
和 ORM 类似,SPL 也是纯 Java 开发,可以完全无缝集成进 Java 应用一起部署分发。但不同的是,使用 SPL 实施计算时通常要把业务逻辑都写成脚本,然后再通过 JDBC 被 Java 调用:
Class.forName("com.esproc.jdbc.InternalDriver");
Connection con= DriverManager.getConnection("jdbc:esproc:local://");
Statement st = con.prepareCall("call SplScript()"); //SPL脚本名称
st.execute();
ResultSet rs = st.getResultSet();
这样会导致计算代码和 Java 代码分开,和 ORM 与 Java 应用完全混到一起的风格不太一样,ORM 程序员开始可能会有些不习惯。其实,SPL 有完整的流程控制,像 if、for 这些都有,实现业务功能反而比用 Java 更方便。
独立的 SPL 脚本好处是热更新。SPL 脚本是解释执行的,独立应用运行时,如果统计逻辑变了,你可以优哉游哉改 SPL 脚本,改完直接上传服务器,业务系统秒级生效,连重启都不用。而像 JOOQ 这些,改完 Java 代码还得重新编译部署,体验会很差。
本质上, SPL 并不是把数据表对象化,而是直接使用 SQL 操纵数据库。用这种方式做简单的单表增删查可能还不如 MyBatis 顺手。但只要遇到复杂计算、异构数据、频繁改需求这三座大山,SPL 绝对能把你从 ORM 的泥潭里捞出来。程序员何必为难自己?让 ORM 干它擅长的对象映射,把计算交给专业的 SPL,这不比在 Java 里死磕 SQL 优雅多了?