赛题任务
选手根据提供的demo数据集,可以基于demo数据集进行数据增强、自行搜集数据等方式扩充数据集,并自行划分数据。运用深度学习、强化学习或更加优秀人工智能的方法预测PROTACs的降解能力,若DC50>100nM且Dmax<80% ,则视为降解能力较差(demo数据集中Label=0);若DC50<=100nM或Dmax>=80%,则视为降解能力好(demo数据集中Label=1)。
- 核心任务--->预测PROTACs的降解能力。
- 实现效果--->分类为 降解能力较差/降解能力好 两种结论。
- 解决方法--->基于demo数据集进行数据增强、自行搜集数据等方式扩充数据集,并自行划分数据用于训练和验证模型。
- 解题思路--->需要利用给定的数据集进行特征工程、模型选择和训练,然后使用训练好的模型对测试集中的用户进行预测,并生成相应的预测结果。
注:PROTACs:是一种三元复合物由目标蛋白配体、linker、E3连接酶配体组成,靶向降解目标蛋白质。
预测目标
- 需要预测PROTACsDmax的降解能力,具体来说,就是预测 Lable 字段的值。
- 根据 DC50 和 Dmax 的值来判断降解能力的好坏: