训练分子性质分类预测模型——赛题深入解析

赛题任务

选手根据提供的demo数据集,可以基于demo数据集进行数据增强、自行搜集数据等方式扩充数据集,并自行划分数据。运用深度学习、强化学习或更加优秀人工智能的方法预测PROTACs的降解能力,若DC50>100nM且Dmax<80% ,则视为降解能力较差(demo数据集中Label=0);若DC50<=100nM或Dmax>=80%,则视为降解能力好(demo数据集中Label=1)。

  • 核心任务--->预测PROTACs的降解能力。
  • 实现效果--->分类为 降解能力较差/降解能力好 两种结论。
  • 解决方法--->基于demo数据集进行数据增强、自行搜集数据等方式扩充数据集,并自行划分数据用于训练和验证模型。
  • 解题思路--->需要利用给定的数据集进行特征工程、模型选择和训练,然后使用训练好的模型对测试集中的用户进行预测,并生成相应的预测结果。

注:PROTACs:是一种三元复合物由目标蛋白配体、linker、E3连接酶配体组成,靶向降解目标蛋白质。

预测目标

  • 需要预测PROTACsDmax的降解能力,具体来说,就是预测 Lable 字段的值。
  • 根据 DC50 和 Dmax 的值来判断降解能力的好坏:

       

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值