数学建模常用模型——回归

本文详细介绍了回归分析,包括线性回归、曲线回归和logistic回归。线性回归和曲线回归基于最小二乘法原理,logistic回归用于分类问题。在多元回归中,通过分析不同自变量对因变量的影响,选择最优组合。拟合和回归的关系也有所阐述,其中logistic回归采用sigmoid函数确保输出值在[0,1]之间。这些回归模型是数据建模的基础,对于数学建模比赛至关重要。" 83050572,8070421,Pandas DataFrame详解与实战,"['Python', 'DataFrame', '数据处理', 'Pandas库', '数据分析']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        今天我们来介绍一下回归。回归在百度百科里面的定义是:回归是一种数学模型,研究一组随机变量(Y1 ,Y2 ,…,Yi)和另一组(X1,X2,…,Xk)变量之间关系的统计分析方法,又称多重回归分析。通常Y1,Y2,…,Yi是因变量,X1、X2,…,Xk是自变量。回归主要的种类有:线性回归、曲线回归、logistic回归等等。下面我们简单叙述一下这几种回归。

 

线性回归/曲线回归

一元:

对于一元线性回归而言,本质都是依据最小二乘法原理,拟合得到函数y=ax+b的参数a和b,使其值与实际值的残差平方和最小(这里残差平方和函数也叫做代价函数或者损失函数,可以理解为一个衡量参数好坏的目标函数),这里就不详细介绍了。曲线回归也同样,设好要回归的曲线,根据最小二乘法原理求得参数。

下面是matlab一元线性回归示例,可以使用内置函数regress、LinearModel等进行回归分析:

eda014de8bf749e6adbb053e9ae53f39.png

 

说到这里有必要提一下拟合和回归的区别——拟合的概念更广泛,拟合包含回归,还包含插值和逼近。拟合是一种数据处理的方式,不特指哪种方法.简单的说就是你有一组数据,觉得这组数据和一个已知的函数(这个函数的参数未定)很相似,为了得到最能表示这组数据特征的这个函数,通过拟合这种方式(具体的数学方法很

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值