数据量很小用搜索或并查集应该都能过
题目要求:
从一个点到另一个点可以经过多少条不同的边
思路:
为每一条不同编号的边建一个并查集,查看有多少条边可以使这两个点有共同的父节点
B. Mr. Kitayuta's Colorful Graph
Mr. Kitayuta has just bought an undirected graph consisting of n vertices and m edges. The vertices of the graph are numbered from 1 to n. Each edge, namely edge i, has a color ci, connecting vertex ai and bi.
Mr. Kitayuta wants you to process the following q queries.
In the i-th query, he gives you two integers — ui and vi.
Find the number of the colors that satisfy the following condition: the edges of that color connect vertex ui and vertex vidirectly or indirectly.
Input
The first line of the input contains space-separated two integers — n and m (2 ≤ n ≤ 100, 1 ≤ m ≤ 100), denoting the number of the vertices and the number of the edges, respectively.
The next m lines contain space-separated three integers — ai, bi (1 ≤ ai < bi ≤ n) and ci (1 ≤ ci ≤ m). Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if i ≠ j, (ai, bi, ci) ≠ (aj, bj, cj).
The next line contains a integer — q (1 ≤ q ≤ 100), denoting the number of the queries.
Then follows q lines, containing space-separated two integers — ui and vi (1 ≤ ui, vi ≤ n). It is guaranteed that ui ≠ vi.
Output
For each query, print the answer in a separate line.
Examples
4 5 1 2 1 1 2 2 2 3 1 2 3 3 2 4 3 3 1 2 3 4 1 4
2 1 0
5 7 1 5 1 2 5 1 3 5 1 4 5 1 1 2 2 2 3 2 3 4 2 5 1 5 5 1 2 5 1 5 1 4
1 1 1 1 2
#include<stdio.h>
#include<string.h>
#define maxn 105
int pre[maxn][maxn];
void Union(int x,int y,int z);
int find(int a,int b);
int main()
{
int n,m,q;
memset(pre,0,sizeof(pre));
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
pre[i][j]=j;
}
}
for(int i=0;i<m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
Union(a,b,c);
}
scanf("%d",&q);
for(int i=0;i<q;i++)
{
int a,b,ans=0;
scanf("%d%d",&a,&b);
for(int j=1;j<=m;j++)
{
int fa,fb;
fa=find(a,j);
fb=find(b,j);
if(fa==fb)
ans++;
}
printf("%d\n",ans);
}
return 0;
}
void Union(int x,int y,int z)
{
int fx,fy;
fx=find(x,z);
fy=find(y,z);
if(fx!=fy)
pre[z][fx]=fy;
}
int find(int a,int b)
{
int r=a;
while(r!=pre[b][r])
r=pre[b][r];
while(a!=pre[b][a])
{
int s=a;
a=pre[b][a];
pre[b][s]=r;
}
return r;
}