Mr. Kitayuta's Colorful Graph

数据量很小用搜索或并查集应该都能过

题目要求:

从一个点到另一个点可以经过多少条不同的边

思路:

为每一条不同编号的边建一个并查集,查看有多少条边可以使这两个点有共同的父节点

                                        B. Mr. Kitayuta's Colorful Graph

Mr. Kitayuta has just bought an undirected graph consisting of n vertices and m edges. The vertices of the graph are numbered from 1 to n. Each edge, namely edge i, has a color ci, connecting vertex ai and bi.

Mr. Kitayuta wants you to process the following q queries.

In the i-th query, he gives you two integers — ui and vi.

Find the number of the colors that satisfy the following condition: the edges of that color connect vertex ui and vertex vidirectly or indirectly.

Input

The first line of the input contains space-separated two integers — n and m (2 ≤ n ≤ 100, 1 ≤ m ≤ 100), denoting the number of the vertices and the number of the edges, respectively.

The next m lines contain space-separated three integers — aibi (1 ≤ ai < bi ≤ n) and ci (1 ≤ ci ≤ m). Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if i ≠ j(ai, bi, ci) ≠ (aj, bj, cj).

The next line contains a integer — q (1 ≤ q ≤ 100), denoting the number of the queries.

Then follows q lines, containing space-separated two integers — ui and vi (1 ≤ ui, vi ≤ n). It is guaranteed that ui ≠ vi.

Output

For each query, print the answer in a separate line.

Examples

input
4 5
1 2 1
1 2 2
2 3 1
2 3 3
2 4 3
3
1 2
3 4
1 4
output
2
1
0
input
5 7
1 5 1
2 5 1
3 5 1
4 5 1
1 2 2
2 3 2
3 4 2
5
1 5
5 1
2 5
1 5
1 4
output
1
1
1
1
2

Note
Let's consider the first sample.
The figure above shows the first sample.
  • Vertex 1 and vertex 2 are connected by color 1 and 2.
  • Vertex 3 and vertex 4 are connected by color 3.
  • Vertex 1 and vertex 4 are not connected by any single color.

#include<stdio.h>
#include<string.h>
#define maxn 105
int pre[maxn][maxn];
void Union(int x,int y,int z);
int find(int a,int b);
int main() 
{
	int n,m,q;
	memset(pre,0,sizeof(pre));
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++)
	{
		for(int j=1;j<=n;j++)
		{
			pre[i][j]=j;
		}
	}
	for(int i=0;i<m;i++)
	{
		int a,b,c;
		scanf("%d%d%d",&a,&b,&c);
		Union(a,b,c);
	}
	scanf("%d",&q);
	for(int i=0;i<q;i++)
	{
		int a,b,ans=0;
		scanf("%d%d",&a,&b);
		for(int j=1;j<=m;j++)
		{
			int fa,fb;
			fa=find(a,j);
			fb=find(b,j);
			if(fa==fb)
				ans++;
		}
		printf("%d\n",ans);
	}
	return 0;
}
void Union(int x,int y,int z)
{
	int fx,fy;
	fx=find(x,z);
	fy=find(y,z);
	if(fx!=fy)
		pre[z][fx]=fy;
}
int find(int a,int b)
{
	int r=a;
	while(r!=pre[b][r])
		r=pre[b][r];
	while(a!=pre[b][a])
	{
		int s=a;
		a=pre[b][a];
		pre[b][s]=r;
	}
	return r;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值